Numerical study of three-dimensional flow characteristics around swept-back angle 0°, 15°, and 30° on wing airfoil Eppler 562

Airfoil is an aerodynamic structure that is widely used in aircraft wings, UAVs, and fluid engines such as pumps, compressors, and turbines. The airfoil on the UAV wing is used to lift the UAV body where the pressure difference between the top and bottom of the airfoil causes the UAV to get a lift....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hariyadi, S. P. Setyo, Sutardi, Widodo, Wawan Aries
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2366
creator Hariyadi, S. P. Setyo
Sutardi
Widodo, Wawan Aries
description Airfoil is an aerodynamic structure that is widely used in aircraft wings, UAVs, and fluid engines such as pumps, compressors, and turbines. The airfoil on the UAV wing is used to lift the UAV body where the pressure difference between the top and bottom of the airfoil causes the UAV to get a lift. Improving airfoil performance can be done in various ways, one of which is changing the angle of inclination in the airfoil range (swept angle). This is often seen in almost all types of commercial aircraft such as the Boeing 777 and Airbus 380. The method used in this study is a three-dimensional numerical simulation using Ansys 19.1 software. The specimens were Eppler 562 airfoil with a chord length of 200 mm, aspect ratio (AR) of 5, angle of attack 0°, 2°, 4°, 6°, 8°, 10°,12°,15°, 16°,17°,19°, and 20°. The variation of the swept-back used is angle Λ=0° (unswept), 15°, and 30°. Fluid flow is flowing air with the Reynolds number (Re)=2.34 × 104 in unsteady conditions. From this research, it was found that the variation of the swept-back will change the direction of flow to the wingtip and away from the wing root. This change in flow direction will reduce the occurrence of a vortex-shaped streamline that occurs on the unswept or rectangular wing. However, the variation of the swept-back will increase the tip vortex.
doi_str_mv 10.1063/5.0060192
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0060192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572056442</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2032-7ef31ba3953273061aa859db20ed18a4e859eb97e8a4b19f773de96af427783a3</originalsourceid><addsrcrecordid>eNp9kc1KAzEQx4MoWKsH3yDgTdyaj03SPUqpH1D0ouAtzO4mNbrdrMmupTcfyWfwyYy04M3LzPyZ3wz8ZxA6pWRCieSXYkKIJLRge2hEhaCZklTuoxEhRZ6xnD8foqMYXwlhhVLTEfq8H1YmuAoaHPuh3mBvcf8SjMlqtzJtdL5NLdv4Na5eIEDVJzr2rooYgh_aGse16fqshOoNQ7tsDCbfXxeYit8Iqc-Txr7Fa9cuMbhgvWvwvOsaE7CQ7BgdWGiiOdnlMXq6nj_ObrPFw83d7GqRdYxwliljOS2BF4IzxYmkAFNR1CUjpqZTyE1SpiyUSXVJC6sUr00hweYs-eTAx-hsu7cL_n0wsdevfgjJXNRMKEaEzHOWqPMtFSvXQ5_c6y64FYSN_vBBC727ru5q-x9Mif59x98A_wGQp31H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2572056442</pqid></control><display><type>conference_proceeding</type><title>Numerical study of three-dimensional flow characteristics around swept-back angle 0°, 15°, and 30° on wing airfoil Eppler 562</title><source>AIP Journals Complete</source><creator>Hariyadi, S. P. Setyo ; Sutardi ; Widodo, Wawan Aries</creator><contributor>Bahri, Sayr ; Hasbi, Wahyudi ; Septanto, Harry ; Kurniawati, Frida ; Hermawan, Eddy ; Santosa, Cahya Edi ; Kurniawan, Farohaji</contributor><creatorcontrib>Hariyadi, S. P. Setyo ; Sutardi ; Widodo, Wawan Aries ; Bahri, Sayr ; Hasbi, Wahyudi ; Septanto, Harry ; Kurniawati, Frida ; Hermawan, Eddy ; Santosa, Cahya Edi ; Kurniawan, Farohaji</creatorcontrib><description>Airfoil is an aerodynamic structure that is widely used in aircraft wings, UAVs, and fluid engines such as pumps, compressors, and turbines. The airfoil on the UAV wing is used to lift the UAV body where the pressure difference between the top and bottom of the airfoil causes the UAV to get a lift. Improving airfoil performance can be done in various ways, one of which is changing the angle of inclination in the airfoil range (swept angle). This is often seen in almost all types of commercial aircraft such as the Boeing 777 and Airbus 380. The method used in this study is a three-dimensional numerical simulation using Ansys 19.1 software. The specimens were Eppler 562 airfoil with a chord length of 200 mm, aspect ratio (AR) of 5, angle of attack 0°, 2°, 4°, 6°, 8°, 10°,12°,15°, 16°,17°,19°, and 20°. The variation of the swept-back used is angle Λ=0° (unswept), 15°, and 30°. Fluid flow is flowing air with the Reynolds number (Re)=2.34 × 104 in unsteady conditions. From this research, it was found that the variation of the swept-back will change the direction of flow to the wingtip and away from the wing root. This change in flow direction will reduce the occurrence of a vortex-shaped streamline that occurs on the unswept or rectangular wing. However, the variation of the swept-back will increase the tip vortex.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0060192</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aerodynamics ; Aircraft ; Aircraft engines ; Airfoils ; Angle of attack ; Aspect ratio ; CAD ; Commercial aircraft ; Compressors ; Computational fluid dynamics ; Computer aided design ; Flow characteristics ; Fluid flow ; Inclination angle ; Lift ; Reynolds number ; Three dimensional flow ; Turbines ; Unmanned aerial vehicles ; Wing roots ; Wing tip vortices ; Wing tips ; Wings (aircraft)</subject><ispartof>AIP conference proceedings, 2021, Vol.2366 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0060192$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,791,4498,23911,23912,25121,27905,27906,76133</link.rule.ids></links><search><contributor>Bahri, Sayr</contributor><contributor>Hasbi, Wahyudi</contributor><contributor>Septanto, Harry</contributor><contributor>Kurniawati, Frida</contributor><contributor>Hermawan, Eddy</contributor><contributor>Santosa, Cahya Edi</contributor><contributor>Kurniawan, Farohaji</contributor><creatorcontrib>Hariyadi, S. P. Setyo</creatorcontrib><creatorcontrib>Sutardi</creatorcontrib><creatorcontrib>Widodo, Wawan Aries</creatorcontrib><title>Numerical study of three-dimensional flow characteristics around swept-back angle 0°, 15°, and 30° on wing airfoil Eppler 562</title><title>AIP conference proceedings</title><description>Airfoil is an aerodynamic structure that is widely used in aircraft wings, UAVs, and fluid engines such as pumps, compressors, and turbines. The airfoil on the UAV wing is used to lift the UAV body where the pressure difference between the top and bottom of the airfoil causes the UAV to get a lift. Improving airfoil performance can be done in various ways, one of which is changing the angle of inclination in the airfoil range (swept angle). This is often seen in almost all types of commercial aircraft such as the Boeing 777 and Airbus 380. The method used in this study is a three-dimensional numerical simulation using Ansys 19.1 software. The specimens were Eppler 562 airfoil with a chord length of 200 mm, aspect ratio (AR) of 5, angle of attack 0°, 2°, 4°, 6°, 8°, 10°,12°,15°, 16°,17°,19°, and 20°. The variation of the swept-back used is angle Λ=0° (unswept), 15°, and 30°. Fluid flow is flowing air with the Reynolds number (Re)=2.34 × 104 in unsteady conditions. From this research, it was found that the variation of the swept-back will change the direction of flow to the wingtip and away from the wing root. This change in flow direction will reduce the occurrence of a vortex-shaped streamline that occurs on the unswept or rectangular wing. However, the variation of the swept-back will increase the tip vortex.</description><subject>Aerodynamics</subject><subject>Aircraft</subject><subject>Aircraft engines</subject><subject>Airfoils</subject><subject>Angle of attack</subject><subject>Aspect ratio</subject><subject>CAD</subject><subject>Commercial aircraft</subject><subject>Compressors</subject><subject>Computational fluid dynamics</subject><subject>Computer aided design</subject><subject>Flow characteristics</subject><subject>Fluid flow</subject><subject>Inclination angle</subject><subject>Lift</subject><subject>Reynolds number</subject><subject>Three dimensional flow</subject><subject>Turbines</subject><subject>Unmanned aerial vehicles</subject><subject>Wing roots</subject><subject>Wing tip vortices</subject><subject>Wing tips</subject><subject>Wings (aircraft)</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kc1KAzEQx4MoWKsH3yDgTdyaj03SPUqpH1D0ouAtzO4mNbrdrMmupTcfyWfwyYy04M3LzPyZ3wz8ZxA6pWRCieSXYkKIJLRge2hEhaCZklTuoxEhRZ6xnD8foqMYXwlhhVLTEfq8H1YmuAoaHPuh3mBvcf8SjMlqtzJtdL5NLdv4Na5eIEDVJzr2rooYgh_aGse16fqshOoNQ7tsDCbfXxeYit8Iqc-Txr7Fa9cuMbhgvWvwvOsaE7CQ7BgdWGiiOdnlMXq6nj_ObrPFw83d7GqRdYxwliljOS2BF4IzxYmkAFNR1CUjpqZTyE1SpiyUSXVJC6sUr00hweYs-eTAx-hsu7cL_n0wsdevfgjJXNRMKEaEzHOWqPMtFSvXQ5_c6y64FYSN_vBBC727ru5q-x9Mif59x98A_wGQp31H</recordid><startdate>20210913</startdate><enddate>20210913</enddate><creator>Hariyadi, S. P. Setyo</creator><creator>Sutardi</creator><creator>Widodo, Wawan Aries</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210913</creationdate><title>Numerical study of three-dimensional flow characteristics around swept-back angle 0°, 15°, and 30° on wing airfoil Eppler 562</title><author>Hariyadi, S. P. Setyo ; Sutardi ; Widodo, Wawan Aries</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2032-7ef31ba3953273061aa859db20ed18a4e859eb97e8a4b19f773de96af427783a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerodynamics</topic><topic>Aircraft</topic><topic>Aircraft engines</topic><topic>Airfoils</topic><topic>Angle of attack</topic><topic>Aspect ratio</topic><topic>CAD</topic><topic>Commercial aircraft</topic><topic>Compressors</topic><topic>Computational fluid dynamics</topic><topic>Computer aided design</topic><topic>Flow characteristics</topic><topic>Fluid flow</topic><topic>Inclination angle</topic><topic>Lift</topic><topic>Reynolds number</topic><topic>Three dimensional flow</topic><topic>Turbines</topic><topic>Unmanned aerial vehicles</topic><topic>Wing roots</topic><topic>Wing tip vortices</topic><topic>Wing tips</topic><topic>Wings (aircraft)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hariyadi, S. P. Setyo</creatorcontrib><creatorcontrib>Sutardi</creatorcontrib><creatorcontrib>Widodo, Wawan Aries</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hariyadi, S. P. Setyo</au><au>Sutardi</au><au>Widodo, Wawan Aries</au><au>Bahri, Sayr</au><au>Hasbi, Wahyudi</au><au>Septanto, Harry</au><au>Kurniawati, Frida</au><au>Hermawan, Eddy</au><au>Santosa, Cahya Edi</au><au>Kurniawan, Farohaji</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Numerical study of three-dimensional flow characteristics around swept-back angle 0°, 15°, and 30° on wing airfoil Eppler 562</atitle><btitle>AIP conference proceedings</btitle><date>2021-09-13</date><risdate>2021</risdate><volume>2366</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Airfoil is an aerodynamic structure that is widely used in aircraft wings, UAVs, and fluid engines such as pumps, compressors, and turbines. The airfoil on the UAV wing is used to lift the UAV body where the pressure difference between the top and bottom of the airfoil causes the UAV to get a lift. Improving airfoil performance can be done in various ways, one of which is changing the angle of inclination in the airfoil range (swept angle). This is often seen in almost all types of commercial aircraft such as the Boeing 777 and Airbus 380. The method used in this study is a three-dimensional numerical simulation using Ansys 19.1 software. The specimens were Eppler 562 airfoil with a chord length of 200 mm, aspect ratio (AR) of 5, angle of attack 0°, 2°, 4°, 6°, 8°, 10°,12°,15°, 16°,17°,19°, and 20°. The variation of the swept-back used is angle Λ=0° (unswept), 15°, and 30°. Fluid flow is flowing air with the Reynolds number (Re)=2.34 × 104 in unsteady conditions. From this research, it was found that the variation of the swept-back will change the direction of flow to the wingtip and away from the wing root. This change in flow direction will reduce the occurrence of a vortex-shaped streamline that occurs on the unswept or rectangular wing. However, the variation of the swept-back will increase the tip vortex.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0060192</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2021, Vol.2366 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0060192
source AIP Journals Complete
subjects Aerodynamics
Aircraft
Aircraft engines
Airfoils
Angle of attack
Aspect ratio
CAD
Commercial aircraft
Compressors
Computational fluid dynamics
Computer aided design
Flow characteristics
Fluid flow
Inclination angle
Lift
Reynolds number
Three dimensional flow
Turbines
Unmanned aerial vehicles
Wing roots
Wing tip vortices
Wing tips
Wings (aircraft)
title Numerical study of three-dimensional flow characteristics around swept-back angle 0°, 15°, and 30° on wing airfoil Eppler 562
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A20%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Numerical%20study%20of%20three-dimensional%20flow%20characteristics%20around%20swept-back%20angle%200%C2%B0,%2015%C2%B0,%20and%2030%C2%B0%20on%20wing%20airfoil%20Eppler%20562&rft.btitle=AIP%20conference%20proceedings&rft.au=Hariyadi,%20S.%20P.%20Setyo&rft.date=2021-09-13&rft.volume=2366&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0060192&rft_dat=%3Cproquest_scita%3E2572056442%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572056442&rft_id=info:pmid/&rfr_iscdi=true