Numerical study of three-dimensional flow characteristics around swept-back angle 0°, 15°, and 30° on wing airfoil Eppler 562
Airfoil is an aerodynamic structure that is widely used in aircraft wings, UAVs, and fluid engines such as pumps, compressors, and turbines. The airfoil on the UAV wing is used to lift the UAV body where the pressure difference between the top and bottom of the airfoil causes the UAV to get a lift....
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2366 |
creator | Hariyadi, S. P. Setyo Sutardi Widodo, Wawan Aries |
description | Airfoil is an aerodynamic structure that is widely used in aircraft wings, UAVs, and fluid engines such as pumps, compressors, and turbines. The airfoil on the UAV wing is used to lift the UAV body where the pressure difference between the top and bottom of the airfoil causes the UAV to get a lift. Improving airfoil performance can be done in various ways, one of which is changing the angle of inclination in the airfoil range (swept angle). This is often seen in almost all types of commercial aircraft such as the Boeing 777 and Airbus 380. The method used in this study is a three-dimensional numerical simulation using Ansys 19.1 software. The specimens were Eppler 562 airfoil with a chord length of 200 mm, aspect ratio (AR) of 5, angle of attack 0°, 2°, 4°, 6°, 8°, 10°,12°,15°, 16°,17°,19°, and 20°. The variation of the swept-back used is angle Λ=0° (unswept), 15°, and 30°. Fluid flow is flowing air with the Reynolds number (Re)=2.34 × 104 in unsteady conditions. From this research, it was found that the variation of the swept-back will change the direction of flow to the wingtip and away from the wing root. This change in flow direction will reduce the occurrence of a vortex-shaped streamline that occurs on the unswept or rectangular wing. However, the variation of the swept-back will increase the tip vortex. |
doi_str_mv | 10.1063/5.0060192 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0060192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572056442</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2032-7ef31ba3953273061aa859db20ed18a4e859eb97e8a4b19f773de96af427783a3</originalsourceid><addsrcrecordid>eNp9kc1KAzEQx4MoWKsH3yDgTdyaj03SPUqpH1D0ouAtzO4mNbrdrMmupTcfyWfwyYy04M3LzPyZ3wz8ZxA6pWRCieSXYkKIJLRge2hEhaCZklTuoxEhRZ6xnD8foqMYXwlhhVLTEfq8H1YmuAoaHPuh3mBvcf8SjMlqtzJtdL5NLdv4Na5eIEDVJzr2rooYgh_aGse16fqshOoNQ7tsDCbfXxeYit8Iqc-Txr7Fa9cuMbhgvWvwvOsaE7CQ7BgdWGiiOdnlMXq6nj_ObrPFw83d7GqRdYxwliljOS2BF4IzxYmkAFNR1CUjpqZTyE1SpiyUSXVJC6sUr00hweYs-eTAx-hsu7cL_n0wsdevfgjJXNRMKEaEzHOWqPMtFSvXQ5_c6y64FYSN_vBBC727ru5q-x9Mif59x98A_wGQp31H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2572056442</pqid></control><display><type>conference_proceeding</type><title>Numerical study of three-dimensional flow characteristics around swept-back angle 0°, 15°, and 30° on wing airfoil Eppler 562</title><source>AIP Journals Complete</source><creator>Hariyadi, S. P. Setyo ; Sutardi ; Widodo, Wawan Aries</creator><contributor>Bahri, Sayr ; Hasbi, Wahyudi ; Septanto, Harry ; Kurniawati, Frida ; Hermawan, Eddy ; Santosa, Cahya Edi ; Kurniawan, Farohaji</contributor><creatorcontrib>Hariyadi, S. P. Setyo ; Sutardi ; Widodo, Wawan Aries ; Bahri, Sayr ; Hasbi, Wahyudi ; Septanto, Harry ; Kurniawati, Frida ; Hermawan, Eddy ; Santosa, Cahya Edi ; Kurniawan, Farohaji</creatorcontrib><description>Airfoil is an aerodynamic structure that is widely used in aircraft wings, UAVs, and fluid engines such as pumps, compressors, and turbines. The airfoil on the UAV wing is used to lift the UAV body where the pressure difference between the top and bottom of the airfoil causes the UAV to get a lift. Improving airfoil performance can be done in various ways, one of which is changing the angle of inclination in the airfoil range (swept angle). This is often seen in almost all types of commercial aircraft such as the Boeing 777 and Airbus 380. The method used in this study is a three-dimensional numerical simulation using Ansys 19.1 software. The specimens were Eppler 562 airfoil with a chord length of 200 mm, aspect ratio (AR) of 5, angle of attack 0°, 2°, 4°, 6°, 8°, 10°,12°,15°, 16°,17°,19°, and 20°. The variation of the swept-back used is angle Λ=0° (unswept), 15°, and 30°. Fluid flow is flowing air with the Reynolds number (Re)=2.34 × 104 in unsteady conditions. From this research, it was found that the variation of the swept-back will change the direction of flow to the wingtip and away from the wing root. This change in flow direction will reduce the occurrence of a vortex-shaped streamline that occurs on the unswept or rectangular wing. However, the variation of the swept-back will increase the tip vortex.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0060192</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aerodynamics ; Aircraft ; Aircraft engines ; Airfoils ; Angle of attack ; Aspect ratio ; CAD ; Commercial aircraft ; Compressors ; Computational fluid dynamics ; Computer aided design ; Flow characteristics ; Fluid flow ; Inclination angle ; Lift ; Reynolds number ; Three dimensional flow ; Turbines ; Unmanned aerial vehicles ; Wing roots ; Wing tip vortices ; Wing tips ; Wings (aircraft)</subject><ispartof>AIP conference proceedings, 2021, Vol.2366 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0060192$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,791,4498,23911,23912,25121,27905,27906,76133</link.rule.ids></links><search><contributor>Bahri, Sayr</contributor><contributor>Hasbi, Wahyudi</contributor><contributor>Septanto, Harry</contributor><contributor>Kurniawati, Frida</contributor><contributor>Hermawan, Eddy</contributor><contributor>Santosa, Cahya Edi</contributor><contributor>Kurniawan, Farohaji</contributor><creatorcontrib>Hariyadi, S. P. Setyo</creatorcontrib><creatorcontrib>Sutardi</creatorcontrib><creatorcontrib>Widodo, Wawan Aries</creatorcontrib><title>Numerical study of three-dimensional flow characteristics around swept-back angle 0°, 15°, and 30° on wing airfoil Eppler 562</title><title>AIP conference proceedings</title><description>Airfoil is an aerodynamic structure that is widely used in aircraft wings, UAVs, and fluid engines such as pumps, compressors, and turbines. The airfoil on the UAV wing is used to lift the UAV body where the pressure difference between the top and bottom of the airfoil causes the UAV to get a lift. Improving airfoil performance can be done in various ways, one of which is changing the angle of inclination in the airfoil range (swept angle). This is often seen in almost all types of commercial aircraft such as the Boeing 777 and Airbus 380. The method used in this study is a three-dimensional numerical simulation using Ansys 19.1 software. The specimens were Eppler 562 airfoil with a chord length of 200 mm, aspect ratio (AR) of 5, angle of attack 0°, 2°, 4°, 6°, 8°, 10°,12°,15°, 16°,17°,19°, and 20°. The variation of the swept-back used is angle Λ=0° (unswept), 15°, and 30°. Fluid flow is flowing air with the Reynolds number (Re)=2.34 × 104 in unsteady conditions. From this research, it was found that the variation of the swept-back will change the direction of flow to the wingtip and away from the wing root. This change in flow direction will reduce the occurrence of a vortex-shaped streamline that occurs on the unswept or rectangular wing. However, the variation of the swept-back will increase the tip vortex.</description><subject>Aerodynamics</subject><subject>Aircraft</subject><subject>Aircraft engines</subject><subject>Airfoils</subject><subject>Angle of attack</subject><subject>Aspect ratio</subject><subject>CAD</subject><subject>Commercial aircraft</subject><subject>Compressors</subject><subject>Computational fluid dynamics</subject><subject>Computer aided design</subject><subject>Flow characteristics</subject><subject>Fluid flow</subject><subject>Inclination angle</subject><subject>Lift</subject><subject>Reynolds number</subject><subject>Three dimensional flow</subject><subject>Turbines</subject><subject>Unmanned aerial vehicles</subject><subject>Wing roots</subject><subject>Wing tip vortices</subject><subject>Wing tips</subject><subject>Wings (aircraft)</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kc1KAzEQx4MoWKsH3yDgTdyaj03SPUqpH1D0ouAtzO4mNbrdrMmupTcfyWfwyYy04M3LzPyZ3wz8ZxA6pWRCieSXYkKIJLRge2hEhaCZklTuoxEhRZ6xnD8foqMYXwlhhVLTEfq8H1YmuAoaHPuh3mBvcf8SjMlqtzJtdL5NLdv4Na5eIEDVJzr2rooYgh_aGse16fqshOoNQ7tsDCbfXxeYit8Iqc-Txr7Fa9cuMbhgvWvwvOsaE7CQ7BgdWGiiOdnlMXq6nj_ObrPFw83d7GqRdYxwliljOS2BF4IzxYmkAFNR1CUjpqZTyE1SpiyUSXVJC6sUr00hweYs-eTAx-hsu7cL_n0wsdevfgjJXNRMKEaEzHOWqPMtFSvXQ5_c6y64FYSN_vBBC727ru5q-x9Mif59x98A_wGQp31H</recordid><startdate>20210913</startdate><enddate>20210913</enddate><creator>Hariyadi, S. P. Setyo</creator><creator>Sutardi</creator><creator>Widodo, Wawan Aries</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210913</creationdate><title>Numerical study of three-dimensional flow characteristics around swept-back angle 0°, 15°, and 30° on wing airfoil Eppler 562</title><author>Hariyadi, S. P. Setyo ; Sutardi ; Widodo, Wawan Aries</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2032-7ef31ba3953273061aa859db20ed18a4e859eb97e8a4b19f773de96af427783a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerodynamics</topic><topic>Aircraft</topic><topic>Aircraft engines</topic><topic>Airfoils</topic><topic>Angle of attack</topic><topic>Aspect ratio</topic><topic>CAD</topic><topic>Commercial aircraft</topic><topic>Compressors</topic><topic>Computational fluid dynamics</topic><topic>Computer aided design</topic><topic>Flow characteristics</topic><topic>Fluid flow</topic><topic>Inclination angle</topic><topic>Lift</topic><topic>Reynolds number</topic><topic>Three dimensional flow</topic><topic>Turbines</topic><topic>Unmanned aerial vehicles</topic><topic>Wing roots</topic><topic>Wing tip vortices</topic><topic>Wing tips</topic><topic>Wings (aircraft)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hariyadi, S. P. Setyo</creatorcontrib><creatorcontrib>Sutardi</creatorcontrib><creatorcontrib>Widodo, Wawan Aries</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hariyadi, S. P. Setyo</au><au>Sutardi</au><au>Widodo, Wawan Aries</au><au>Bahri, Sayr</au><au>Hasbi, Wahyudi</au><au>Septanto, Harry</au><au>Kurniawati, Frida</au><au>Hermawan, Eddy</au><au>Santosa, Cahya Edi</au><au>Kurniawan, Farohaji</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Numerical study of three-dimensional flow characteristics around swept-back angle 0°, 15°, and 30° on wing airfoil Eppler 562</atitle><btitle>AIP conference proceedings</btitle><date>2021-09-13</date><risdate>2021</risdate><volume>2366</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Airfoil is an aerodynamic structure that is widely used in aircraft wings, UAVs, and fluid engines such as pumps, compressors, and turbines. The airfoil on the UAV wing is used to lift the UAV body where the pressure difference between the top and bottom of the airfoil causes the UAV to get a lift. Improving airfoil performance can be done in various ways, one of which is changing the angle of inclination in the airfoil range (swept angle). This is often seen in almost all types of commercial aircraft such as the Boeing 777 and Airbus 380. The method used in this study is a three-dimensional numerical simulation using Ansys 19.1 software. The specimens were Eppler 562 airfoil with a chord length of 200 mm, aspect ratio (AR) of 5, angle of attack 0°, 2°, 4°, 6°, 8°, 10°,12°,15°, 16°,17°,19°, and 20°. The variation of the swept-back used is angle Λ=0° (unswept), 15°, and 30°. Fluid flow is flowing air with the Reynolds number (Re)=2.34 × 104 in unsteady conditions. From this research, it was found that the variation of the swept-back will change the direction of flow to the wingtip and away from the wing root. This change in flow direction will reduce the occurrence of a vortex-shaped streamline that occurs on the unswept or rectangular wing. However, the variation of the swept-back will increase the tip vortex.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0060192</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2021, Vol.2366 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0060192 |
source | AIP Journals Complete |
subjects | Aerodynamics Aircraft Aircraft engines Airfoils Angle of attack Aspect ratio CAD Commercial aircraft Compressors Computational fluid dynamics Computer aided design Flow characteristics Fluid flow Inclination angle Lift Reynolds number Three dimensional flow Turbines Unmanned aerial vehicles Wing roots Wing tip vortices Wing tips Wings (aircraft) |
title | Numerical study of three-dimensional flow characteristics around swept-back angle 0°, 15°, and 30° on wing airfoil Eppler 562 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A20%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Numerical%20study%20of%20three-dimensional%20flow%20characteristics%20around%20swept-back%20angle%200%C2%B0,%2015%C2%B0,%20and%2030%C2%B0%20on%20wing%20airfoil%20Eppler%20562&rft.btitle=AIP%20conference%20proceedings&rft.au=Hariyadi,%20S.%20P.%20Setyo&rft.date=2021-09-13&rft.volume=2366&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0060192&rft_dat=%3Cproquest_scita%3E2572056442%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572056442&rft_id=info:pmid/&rfr_iscdi=true |