Improvement of HHV prediction model of biomass based on the ultimate analysis

This paper presents an improved prediction model for the higher heating value (HHV) of biomass based on the ultimate analysis by using the standard least squares method. This study intends for us to predict the HHV of biomass within a wide range of elemental distributions rather than the range of li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of renewable and sustainable energy 2021-09, Vol.13 (5)
Hauptverfasser: Kim, Se Ung, Yun, Jong Sun, Ri, Jong Sim, Hong, Kwang Il, Chon, Ok Sim, Ri, Jin Hyok, Ri, Jang Mi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Journal of renewable and sustainable energy
container_volume 13
creator Kim, Se Ung
Yun, Jong Sun
Ri, Jong Sim
Hong, Kwang Il
Chon, Ok Sim
Ri, Jin Hyok
Ri, Jang Mi
description This paper presents an improved prediction model for the higher heating value (HHV) of biomass based on the ultimate analysis by using the standard least squares method. This study intends for us to predict the HHV of biomass within a wide range of elemental distributions rather than the range of literature in order to create an optimal prediction model. To this end, many experimental data, comprising a wide range of biomass elements, regression models, and neural networks, are used for its comparative validation. As a result, the proposed prediction model, HHV = 2.8799 + 0.2965 * C + 0.4826 * H – 0.0187 * O demonstrates a better HHV prediction performance for biomass in a comparative validation of 250 samples presented in the literature, and the fitness model using a neural network shows a high fitness in the training, validation, and testing for 430 samples.
doi_str_mv 10.1063/5.0059376
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0059376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580776273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-9f3fd0524ceeed2b8ac91bcab4e4927362992562f77d97a3c1e071f025bafcd23</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKsH_0HAk8LWJLvZNEcpaguKF_UasskEt-w2a5IW-u9NaVFB8DTDzMebNw-hS0omlNTlLZ8QwmUp6iM0orKihSCUHf_qT9FZjEtCakY4G6HnRT8Ev4EeVgl7h-fzdzwEsK1JrV_h3lvodvOm9b2OETc6gsV5kz4Ar7vU9joB1ivdbWMbz9GJ012Ei0Mdo7eH-9fZvHh6eVzM7p4KUzKRCulKZ_P5ygCAZc1UG0kbo5sKKslEWTMpGa-ZE8JKoUtDgQjqCOONdsaycoyu9rrZ--caYlJLvw7ZRFSMT4kQdVbJ1PWeMsHHGMCpIWS_YasoUbu0FFeHtDJ7s2ejaZPe_f4Nb3z4AdVg3X_wX-Uv-eB4JQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580776273</pqid></control><display><type>article</type><title>Improvement of HHV prediction model of biomass based on the ultimate analysis</title><source>AIP Journals Complete</source><creator>Kim, Se Ung ; Yun, Jong Sun ; Ri, Jong Sim ; Hong, Kwang Il ; Chon, Ok Sim ; Ri, Jin Hyok ; Ri, Jang Mi</creator><creatorcontrib>Kim, Se Ung ; Yun, Jong Sun ; Ri, Jong Sim ; Hong, Kwang Il ; Chon, Ok Sim ; Ri, Jin Hyok ; Ri, Jang Mi</creatorcontrib><description>This paper presents an improved prediction model for the higher heating value (HHV) of biomass based on the ultimate analysis by using the standard least squares method. This study intends for us to predict the HHV of biomass within a wide range of elemental distributions rather than the range of literature in order to create an optimal prediction model. To this end, many experimental data, comprising a wide range of biomass elements, regression models, and neural networks, are used for its comparative validation. As a result, the proposed prediction model, HHV = 2.8799 + 0.2965 * C + 0.4826 * H – 0.0187 * O demonstrates a better HHV prediction performance for biomass in a comparative validation of 250 samples presented in the literature, and the fitness model using a neural network shows a high fitness in the training, validation, and testing for 430 samples.</description><identifier>ISSN: 1941-7012</identifier><identifier>EISSN: 1941-7012</identifier><identifier>DOI: 10.1063/5.0059376</identifier><identifier>CODEN: JRSEBH</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Biomass ; Calorific value ; Fitness ; Least squares method ; Neural networks ; Prediction models ; Regression models</subject><ispartof>Journal of renewable and sustainable energy, 2021-09, Vol.13 (5)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-9f3fd0524ceeed2b8ac91bcab4e4927362992562f77d97a3c1e071f025bafcd23</citedby><cites>FETCH-LOGICAL-c327t-9f3fd0524ceeed2b8ac91bcab4e4927362992562f77d97a3c1e071f025bafcd23</cites><orcidid>0000-0002-2212-9986 ; 0000-0003-2767-5043 ; 0000-0003-4352-0201 ; 0000-0002-8023-0919 ; 0000-0003-2768-488X ; 0000-0001-7243-5204</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jrse/article-lookup/doi/10.1063/5.0059376$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Kim, Se Ung</creatorcontrib><creatorcontrib>Yun, Jong Sun</creatorcontrib><creatorcontrib>Ri, Jong Sim</creatorcontrib><creatorcontrib>Hong, Kwang Il</creatorcontrib><creatorcontrib>Chon, Ok Sim</creatorcontrib><creatorcontrib>Ri, Jin Hyok</creatorcontrib><creatorcontrib>Ri, Jang Mi</creatorcontrib><title>Improvement of HHV prediction model of biomass based on the ultimate analysis</title><title>Journal of renewable and sustainable energy</title><description>This paper presents an improved prediction model for the higher heating value (HHV) of biomass based on the ultimate analysis by using the standard least squares method. This study intends for us to predict the HHV of biomass within a wide range of elemental distributions rather than the range of literature in order to create an optimal prediction model. To this end, many experimental data, comprising a wide range of biomass elements, regression models, and neural networks, are used for its comparative validation. As a result, the proposed prediction model, HHV = 2.8799 + 0.2965 * C + 0.4826 * H – 0.0187 * O demonstrates a better HHV prediction performance for biomass in a comparative validation of 250 samples presented in the literature, and the fitness model using a neural network shows a high fitness in the training, validation, and testing for 430 samples.</description><subject>Biomass</subject><subject>Calorific value</subject><subject>Fitness</subject><subject>Least squares method</subject><subject>Neural networks</subject><subject>Prediction models</subject><subject>Regression models</subject><issn>1941-7012</issn><issn>1941-7012</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKsH_0HAk8LWJLvZNEcpaguKF_UasskEt-w2a5IW-u9NaVFB8DTDzMebNw-hS0omlNTlLZ8QwmUp6iM0orKihSCUHf_qT9FZjEtCakY4G6HnRT8Ev4EeVgl7h-fzdzwEsK1JrV_h3lvodvOm9b2OETc6gsV5kz4Ar7vU9joB1ivdbWMbz9GJ012Ei0Mdo7eH-9fZvHh6eVzM7p4KUzKRCulKZ_P5ygCAZc1UG0kbo5sKKslEWTMpGa-ZE8JKoUtDgQjqCOONdsaycoyu9rrZ--caYlJLvw7ZRFSMT4kQdVbJ1PWeMsHHGMCpIWS_YasoUbu0FFeHtDJ7s2ejaZPe_f4Nb3z4AdVg3X_wX-Uv-eB4JQ</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Kim, Se Ung</creator><creator>Yun, Jong Sun</creator><creator>Ri, Jong Sim</creator><creator>Hong, Kwang Il</creator><creator>Chon, Ok Sim</creator><creator>Ri, Jin Hyok</creator><creator>Ri, Jang Mi</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2212-9986</orcidid><orcidid>https://orcid.org/0000-0003-2767-5043</orcidid><orcidid>https://orcid.org/0000-0003-4352-0201</orcidid><orcidid>https://orcid.org/0000-0002-8023-0919</orcidid><orcidid>https://orcid.org/0000-0003-2768-488X</orcidid><orcidid>https://orcid.org/0000-0001-7243-5204</orcidid></search><sort><creationdate>202109</creationdate><title>Improvement of HHV prediction model of biomass based on the ultimate analysis</title><author>Kim, Se Ung ; Yun, Jong Sun ; Ri, Jong Sim ; Hong, Kwang Il ; Chon, Ok Sim ; Ri, Jin Hyok ; Ri, Jang Mi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-9f3fd0524ceeed2b8ac91bcab4e4927362992562f77d97a3c1e071f025bafcd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomass</topic><topic>Calorific value</topic><topic>Fitness</topic><topic>Least squares method</topic><topic>Neural networks</topic><topic>Prediction models</topic><topic>Regression models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Se Ung</creatorcontrib><creatorcontrib>Yun, Jong Sun</creatorcontrib><creatorcontrib>Ri, Jong Sim</creatorcontrib><creatorcontrib>Hong, Kwang Il</creatorcontrib><creatorcontrib>Chon, Ok Sim</creatorcontrib><creatorcontrib>Ri, Jin Hyok</creatorcontrib><creatorcontrib>Ri, Jang Mi</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of renewable and sustainable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Se Ung</au><au>Yun, Jong Sun</au><au>Ri, Jong Sim</au><au>Hong, Kwang Il</au><au>Chon, Ok Sim</au><au>Ri, Jin Hyok</au><au>Ri, Jang Mi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of HHV prediction model of biomass based on the ultimate analysis</atitle><jtitle>Journal of renewable and sustainable energy</jtitle><date>2021-09</date><risdate>2021</risdate><volume>13</volume><issue>5</issue><issn>1941-7012</issn><eissn>1941-7012</eissn><coden>JRSEBH</coden><abstract>This paper presents an improved prediction model for the higher heating value (HHV) of biomass based on the ultimate analysis by using the standard least squares method. This study intends for us to predict the HHV of biomass within a wide range of elemental distributions rather than the range of literature in order to create an optimal prediction model. To this end, many experimental data, comprising a wide range of biomass elements, regression models, and neural networks, are used for its comparative validation. As a result, the proposed prediction model, HHV = 2.8799 + 0.2965 * C + 0.4826 * H – 0.0187 * O demonstrates a better HHV prediction performance for biomass in a comparative validation of 250 samples presented in the literature, and the fitness model using a neural network shows a high fitness in the training, validation, and testing for 430 samples.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0059376</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2212-9986</orcidid><orcidid>https://orcid.org/0000-0003-2767-5043</orcidid><orcidid>https://orcid.org/0000-0003-4352-0201</orcidid><orcidid>https://orcid.org/0000-0002-8023-0919</orcidid><orcidid>https://orcid.org/0000-0003-2768-488X</orcidid><orcidid>https://orcid.org/0000-0001-7243-5204</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1941-7012
ispartof Journal of renewable and sustainable energy, 2021-09, Vol.13 (5)
issn 1941-7012
1941-7012
language eng
recordid cdi_scitation_primary_10_1063_5_0059376
source AIP Journals Complete
subjects Biomass
Calorific value
Fitness
Least squares method
Neural networks
Prediction models
Regression models
title Improvement of HHV prediction model of biomass based on the ultimate analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A08%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20HHV%20prediction%20model%20of%20biomass%20based%20on%20the%20ultimate%20analysis&rft.jtitle=Journal%20of%20renewable%20and%20sustainable%20energy&rft.au=Kim,%20Se%20Ung&rft.date=2021-09&rft.volume=13&rft.issue=5&rft.issn=1941-7012&rft.eissn=1941-7012&rft.coden=JRSEBH&rft_id=info:doi/10.1063/5.0059376&rft_dat=%3Cproquest_scita%3E2580776273%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580776273&rft_id=info:pmid/&rfr_iscdi=true