Monitoring and control of temperature, humidity using machine learning

In this paper, In Recent Year Machine learning plays important role in analyzing the various time of weather condition all around the world especially Indian Subcontinent. Data is available in the government website to analyze the data for few long years. This should be matched with UCI technique fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shukla, Arvind Kumar, Gupta, Ashish, Arunraja, A., Madhuvappan, C. Arunkumar
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2378
creator Shukla, Arvind Kumar
Gupta, Ashish
Arunraja, A.
Madhuvappan, C. Arunkumar
description In this paper, In Recent Year Machine learning plays important role in analyzing the various time of weather condition all around the world especially Indian Subcontinent. Data is available in the government website to analyze the data for few long years. This should be matched with UCI technique for the machine learning and obtain the condition of different level of data repository. Temperature and humidity level condition of different parameters were analyzed and taken as example of weather condition to monitor the weather condition. We need to design a model to fit the different condition and need to extrapolating the needs of information, and optimize the technique using some algorithm and variation should be targeted and value should be analyzed.
doi_str_mv 10.1063/5.0058428
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0058428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2547672034</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-7109050dd2523daf323621f8611831cabf166204b068287757e88b05d2301cc73</originalsourceid><addsrcrecordid>eNp9kE1LAzEYhIMoWKsH_8GCN3Hr-yabjx6lWBUqXhS8hXSTtSndZM1mhf57W1rw5mlgeGYGhpBrhAmCYPd8AsBVRdUJGSHnWEqB4pSMAKZVSSv2eU4u-n4NQKdSqhGZv8bgc0w-fBUm2KKOIae4KWJTZNd2Lpk8JHdXrIbWW5-3xdDv0dbUKx9csXEmhZ1xSc4as-nd1VHH5GP--D57LhdvTy-zh0XZoVC5lAhT4GAt5ZRZ0zDKBMVGCUTFsDbLBoWgUC1BKKqk5NIptQRuKQOsa8nG5ObQ26X4Pbg-63UcUthNasorKSQFVu2o2wPV1z6b7GPQXfKtSVv9E5Pm-viR7mzzH4yg96f-Bdgv9K1nRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2547672034</pqid></control><display><type>conference_proceeding</type><title>Monitoring and control of temperature, humidity using machine learning</title><source>American Institute of Physics (AIP) Journals</source><creator>Shukla, Arvind Kumar ; Gupta, Ashish ; Arunraja, A. ; Madhuvappan, C. Arunkumar</creator><contributor>Vijayan, V. ; Dinesh, S. ; Srinivasan, R. ; Parthiban, A.</contributor><creatorcontrib>Shukla, Arvind Kumar ; Gupta, Ashish ; Arunraja, A. ; Madhuvappan, C. Arunkumar ; Vijayan, V. ; Dinesh, S. ; Srinivasan, R. ; Parthiban, A.</creatorcontrib><description>In this paper, In Recent Year Machine learning plays important role in analyzing the various time of weather condition all around the world especially Indian Subcontinent. Data is available in the government website to analyze the data for few long years. This should be matched with UCI technique for the machine learning and obtain the condition of different level of data repository. Temperature and humidity level condition of different parameters were analyzed and taken as example of weather condition to monitor the weather condition. We need to design a model to fit the different condition and need to extrapolating the needs of information, and optimize the technique using some algorithm and variation should be targeted and value should be analyzed.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0058428</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Humidity ; Machine learning ; Weather ; Websites</subject><ispartof>AIP Conference Proceedings, 2021, Vol.2378 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0058428$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,795,4513,23932,23933,25142,27926,27927,76386</link.rule.ids></links><search><contributor>Vijayan, V.</contributor><contributor>Dinesh, S.</contributor><contributor>Srinivasan, R.</contributor><contributor>Parthiban, A.</contributor><creatorcontrib>Shukla, Arvind Kumar</creatorcontrib><creatorcontrib>Gupta, Ashish</creatorcontrib><creatorcontrib>Arunraja, A.</creatorcontrib><creatorcontrib>Madhuvappan, C. Arunkumar</creatorcontrib><title>Monitoring and control of temperature, humidity using machine learning</title><title>AIP Conference Proceedings</title><description>In this paper, In Recent Year Machine learning plays important role in analyzing the various time of weather condition all around the world especially Indian Subcontinent. Data is available in the government website to analyze the data for few long years. This should be matched with UCI technique for the machine learning and obtain the condition of different level of data repository. Temperature and humidity level condition of different parameters were analyzed and taken as example of weather condition to monitor the weather condition. We need to design a model to fit the different condition and need to extrapolating the needs of information, and optimize the technique using some algorithm and variation should be targeted and value should be analyzed.</description><subject>Algorithms</subject><subject>Humidity</subject><subject>Machine learning</subject><subject>Weather</subject><subject>Websites</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LAzEYhIMoWKsH_8GCN3Hr-yabjx6lWBUqXhS8hXSTtSndZM1mhf57W1rw5mlgeGYGhpBrhAmCYPd8AsBVRdUJGSHnWEqB4pSMAKZVSSv2eU4u-n4NQKdSqhGZv8bgc0w-fBUm2KKOIae4KWJTZNd2Lpk8JHdXrIbWW5-3xdDv0dbUKx9csXEmhZ1xSc4as-nd1VHH5GP--D57LhdvTy-zh0XZoVC5lAhT4GAt5ZRZ0zDKBMVGCUTFsDbLBoWgUC1BKKqk5NIptQRuKQOsa8nG5ObQ26X4Pbg-63UcUthNasorKSQFVu2o2wPV1z6b7GPQXfKtSVv9E5Pm-viR7mzzH4yg96f-Bdgv9K1nRw</recordid><startdate>20210702</startdate><enddate>20210702</enddate><creator>Shukla, Arvind Kumar</creator><creator>Gupta, Ashish</creator><creator>Arunraja, A.</creator><creator>Madhuvappan, C. Arunkumar</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210702</creationdate><title>Monitoring and control of temperature, humidity using machine learning</title><author>Shukla, Arvind Kumar ; Gupta, Ashish ; Arunraja, A. ; Madhuvappan, C. Arunkumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-7109050dd2523daf323621f8611831cabf166204b068287757e88b05d2301cc73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Humidity</topic><topic>Machine learning</topic><topic>Weather</topic><topic>Websites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shukla, Arvind Kumar</creatorcontrib><creatorcontrib>Gupta, Ashish</creatorcontrib><creatorcontrib>Arunraja, A.</creatorcontrib><creatorcontrib>Madhuvappan, C. Arunkumar</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shukla, Arvind Kumar</au><au>Gupta, Ashish</au><au>Arunraja, A.</au><au>Madhuvappan, C. Arunkumar</au><au>Vijayan, V.</au><au>Dinesh, S.</au><au>Srinivasan, R.</au><au>Parthiban, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Monitoring and control of temperature, humidity using machine learning</atitle><btitle>AIP Conference Proceedings</btitle><date>2021-07-02</date><risdate>2021</risdate><volume>2378</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this paper, In Recent Year Machine learning plays important role in analyzing the various time of weather condition all around the world especially Indian Subcontinent. Data is available in the government website to analyze the data for few long years. This should be matched with UCI technique for the machine learning and obtain the condition of different level of data repository. Temperature and humidity level condition of different parameters were analyzed and taken as example of weather condition to monitor the weather condition. We need to design a model to fit the different condition and need to extrapolating the needs of information, and optimize the technique using some algorithm and variation should be targeted and value should be analyzed.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0058428</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2021, Vol.2378 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0058428
source American Institute of Physics (AIP) Journals
subjects Algorithms
Humidity
Machine learning
Weather
Websites
title Monitoring and control of temperature, humidity using machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T17%3A32%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Monitoring%20and%20control%20of%20temperature,%20humidity%20using%20machine%20learning&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Shukla,%20Arvind%20Kumar&rft.date=2021-07-02&rft.volume=2378&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0058428&rft_dat=%3Cproquest_scita%3E2547672034%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547672034&rft_id=info:pmid/&rfr_iscdi=true