Monitoring and control of temperature, humidity using machine learning
In this paper, In Recent Year Machine learning plays important role in analyzing the various time of weather condition all around the world especially Indian Subcontinent. Data is available in the government website to analyze the data for few long years. This should be matched with UCI technique fo...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2378 |
creator | Shukla, Arvind Kumar Gupta, Ashish Arunraja, A. Madhuvappan, C. Arunkumar |
description | In this paper, In Recent Year Machine learning plays important role in analyzing the various time of weather condition all around the world especially Indian Subcontinent. Data is available in the government website to analyze the data for few long years. This should be matched with UCI technique for the machine learning and obtain the condition of different level of data repository. Temperature and humidity level condition of different parameters were analyzed and taken as example of weather condition to monitor the weather condition. We need to design a model to fit the different condition and need to extrapolating the needs of information, and optimize the technique using some algorithm and variation should be targeted and value should be analyzed. |
doi_str_mv | 10.1063/5.0058428 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0058428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2547672034</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-7109050dd2523daf323621f8611831cabf166204b068287757e88b05d2301cc73</originalsourceid><addsrcrecordid>eNp9kE1LAzEYhIMoWKsH_8GCN3Hr-yabjx6lWBUqXhS8hXSTtSndZM1mhf57W1rw5mlgeGYGhpBrhAmCYPd8AsBVRdUJGSHnWEqB4pSMAKZVSSv2eU4u-n4NQKdSqhGZv8bgc0w-fBUm2KKOIae4KWJTZNd2Lpk8JHdXrIbWW5-3xdDv0dbUKx9csXEmhZ1xSc4as-nd1VHH5GP--D57LhdvTy-zh0XZoVC5lAhT4GAt5ZRZ0zDKBMVGCUTFsDbLBoWgUC1BKKqk5NIptQRuKQOsa8nG5ObQ26X4Pbg-63UcUthNasorKSQFVu2o2wPV1z6b7GPQXfKtSVv9E5Pm-viR7mzzH4yg96f-Bdgv9K1nRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2547672034</pqid></control><display><type>conference_proceeding</type><title>Monitoring and control of temperature, humidity using machine learning</title><source>American Institute of Physics (AIP) Journals</source><creator>Shukla, Arvind Kumar ; Gupta, Ashish ; Arunraja, A. ; Madhuvappan, C. Arunkumar</creator><contributor>Vijayan, V. ; Dinesh, S. ; Srinivasan, R. ; Parthiban, A.</contributor><creatorcontrib>Shukla, Arvind Kumar ; Gupta, Ashish ; Arunraja, A. ; Madhuvappan, C. Arunkumar ; Vijayan, V. ; Dinesh, S. ; Srinivasan, R. ; Parthiban, A.</creatorcontrib><description>In this paper, In Recent Year Machine learning plays important role in analyzing the various time of weather condition all around the world especially Indian Subcontinent. Data is available in the government website to analyze the data for few long years. This should be matched with UCI technique for the machine learning and obtain the condition of different level of data repository. Temperature and humidity level condition of different parameters were analyzed and taken as example of weather condition to monitor the weather condition. We need to design a model to fit the different condition and need to extrapolating the needs of information, and optimize the technique using some algorithm and variation should be targeted and value should be analyzed.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0058428</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Humidity ; Machine learning ; Weather ; Websites</subject><ispartof>AIP Conference Proceedings, 2021, Vol.2378 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0058428$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,795,4513,23932,23933,25142,27926,27927,76386</link.rule.ids></links><search><contributor>Vijayan, V.</contributor><contributor>Dinesh, S.</contributor><contributor>Srinivasan, R.</contributor><contributor>Parthiban, A.</contributor><creatorcontrib>Shukla, Arvind Kumar</creatorcontrib><creatorcontrib>Gupta, Ashish</creatorcontrib><creatorcontrib>Arunraja, A.</creatorcontrib><creatorcontrib>Madhuvappan, C. Arunkumar</creatorcontrib><title>Monitoring and control of temperature, humidity using machine learning</title><title>AIP Conference Proceedings</title><description>In this paper, In Recent Year Machine learning plays important role in analyzing the various time of weather condition all around the world especially Indian Subcontinent. Data is available in the government website to analyze the data for few long years. This should be matched with UCI technique for the machine learning and obtain the condition of different level of data repository. Temperature and humidity level condition of different parameters were analyzed and taken as example of weather condition to monitor the weather condition. We need to design a model to fit the different condition and need to extrapolating the needs of information, and optimize the technique using some algorithm and variation should be targeted and value should be analyzed.</description><subject>Algorithms</subject><subject>Humidity</subject><subject>Machine learning</subject><subject>Weather</subject><subject>Websites</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LAzEYhIMoWKsH_8GCN3Hr-yabjx6lWBUqXhS8hXSTtSndZM1mhf57W1rw5mlgeGYGhpBrhAmCYPd8AsBVRdUJGSHnWEqB4pSMAKZVSSv2eU4u-n4NQKdSqhGZv8bgc0w-fBUm2KKOIae4KWJTZNd2Lpk8JHdXrIbWW5-3xdDv0dbUKx9csXEmhZ1xSc4as-nd1VHH5GP--D57LhdvTy-zh0XZoVC5lAhT4GAt5ZRZ0zDKBMVGCUTFsDbLBoWgUC1BKKqk5NIptQRuKQOsa8nG5ObQ26X4Pbg-63UcUthNasorKSQFVu2o2wPV1z6b7GPQXfKtSVv9E5Pm-viR7mzzH4yg96f-Bdgv9K1nRw</recordid><startdate>20210702</startdate><enddate>20210702</enddate><creator>Shukla, Arvind Kumar</creator><creator>Gupta, Ashish</creator><creator>Arunraja, A.</creator><creator>Madhuvappan, C. Arunkumar</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210702</creationdate><title>Monitoring and control of temperature, humidity using machine learning</title><author>Shukla, Arvind Kumar ; Gupta, Ashish ; Arunraja, A. ; Madhuvappan, C. Arunkumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-7109050dd2523daf323621f8611831cabf166204b068287757e88b05d2301cc73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Humidity</topic><topic>Machine learning</topic><topic>Weather</topic><topic>Websites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shukla, Arvind Kumar</creatorcontrib><creatorcontrib>Gupta, Ashish</creatorcontrib><creatorcontrib>Arunraja, A.</creatorcontrib><creatorcontrib>Madhuvappan, C. Arunkumar</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shukla, Arvind Kumar</au><au>Gupta, Ashish</au><au>Arunraja, A.</au><au>Madhuvappan, C. Arunkumar</au><au>Vijayan, V.</au><au>Dinesh, S.</au><au>Srinivasan, R.</au><au>Parthiban, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Monitoring and control of temperature, humidity using machine learning</atitle><btitle>AIP Conference Proceedings</btitle><date>2021-07-02</date><risdate>2021</risdate><volume>2378</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this paper, In Recent Year Machine learning plays important role in analyzing the various time of weather condition all around the world especially Indian Subcontinent. Data is available in the government website to analyze the data for few long years. This should be matched with UCI technique for the machine learning and obtain the condition of different level of data repository. Temperature and humidity level condition of different parameters were analyzed and taken as example of weather condition to monitor the weather condition. We need to design a model to fit the different condition and need to extrapolating the needs of information, and optimize the technique using some algorithm and variation should be targeted and value should be analyzed.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0058428</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2021, Vol.2378 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0058428 |
source | American Institute of Physics (AIP) Journals |
subjects | Algorithms Humidity Machine learning Weather Websites |
title | Monitoring and control of temperature, humidity using machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T17%3A32%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Monitoring%20and%20control%20of%20temperature,%20humidity%20using%20machine%20learning&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Shukla,%20Arvind%20Kumar&rft.date=2021-07-02&rft.volume=2378&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0058428&rft_dat=%3Cproquest_scita%3E2547672034%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547672034&rft_id=info:pmid/&rfr_iscdi=true |