Evaluation of high-dielectric pads for macaque brain imaging at 7 T
A non-human primate is a valuable model for investigating the structure and function of the brain. Different from the human brain imaging using radio frequency (RF) head coils, in the present study, on a human whole-body 7 T magnetic resonance imaging system, we used an RF knee coil for monkey brain...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2021-10, Vol.92 (10), p.104101-104101, Article 104101 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A non-human primate is a valuable model for investigating the structure and function of the brain. Different from the human brain imaging using radio frequency (RF) head coils, in the present study, on a human whole-body 7 T magnetic resonance imaging system, we used an RF knee coil for monkey brain imaging in vivo due to the smaller size of the macaque’s brain compared to that of a human, and particularly, high-dielectric pads were also utilized in order to improve brain imaging performance. Our experimental results suggest that high-dielectric pads can effectively enhance the B1 field strength and receive sensitivity, leading to a higher flip-angle magnitude, an image signal-to-noise ratio, and tissue contrast, and in the meantime, we did not observe elevated receive array element coupling and receive noise amplification nor apparent magnetic susceptibility-induced artifact or distortion, showing that the pads do not introduce adverse RF interferences in macaque brain imaging at 7 T. |
---|---|
ISSN: | 0034-6748 1089-7623 |
DOI: | 10.1063/5.0057847 |