Predictive optical photoabsorption of Ag24Au(DMBT)18− via efficient TDDFT simulations

We report a computational study via time-dependent density-functional theory (TDDFT) methods of the photo-absorption spectrum of an atomically precise monolayer-protected cluster (MPC), the Ag24Au(DMBT)18 single negative anion, where DMBT is the 2,4-dimethylbenzenethiolate ligand. The use of efficie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2021-08, Vol.155 (8), p.084103-084103
Hauptverfasser: Medves, Marco, Sementa, Luca, Toffoli, Daniele, Fronzoni, Giovanna, Krishnadas, Kumaranchira Ramankutty, Bürgi, Thomas, Bonacchi, Sara, Dainese, Tiziano, Maran, Flavio, Fortunelli, Alessandro, Stener, Mauro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 084103
container_issue 8
container_start_page 084103
container_title The Journal of chemical physics
container_volume 155
creator Medves, Marco
Sementa, Luca
Toffoli, Daniele
Fronzoni, Giovanna
Krishnadas, Kumaranchira Ramankutty
Bürgi, Thomas
Bonacchi, Sara
Dainese, Tiziano
Maran, Flavio
Fortunelli, Alessandro
Stener, Mauro
description We report a computational study via time-dependent density-functional theory (TDDFT) methods of the photo-absorption spectrum of an atomically precise monolayer-protected cluster (MPC), the Ag24Au(DMBT)18 single negative anion, where DMBT is the 2,4-dimethylbenzenethiolate ligand. The use of efficient simulation algorithms, i.e., the complex polarizability polTDDFT approach and the hybrid-diagonal approximation, allows us to employ a variety of exchange-correlation (xc-) functionals at an affordable computational cost. We are thus able to show, first, how the optical response of this prototypical compound, especially but not exclusively in the absorption threshold (low-energy) region, is sensitive to (1) the choice of the xc-functionals employed in the Kohn–Sham equations and the TDDFT kernel and (2) the choice of the MPC geometry. By comparing simulated spectra with precise experimental photoabsorption data obtained from room temperature down to low temperatures, we then demonstrate how a hybrid xc-functional in both the Kohn–Sham equations and the diagonal TDDFT kernel at the crystallographically determined experimental geometry is able to provide a consistent agreement between simulated and measured spectra across the entire optical region. Single-particle decomposition analysis tools finally allow us to understand the physical reason for the failure of non-hybrid approaches.
doi_str_mv 10.1063/5.0056869
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0056869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2568596280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3069-e3edcf346fd371c2e1184ee91914326dcc91c8c10ec31e12bb28b0b0f880b8673</originalsourceid><addsrcrecordid>eNqd0EFLwzAUB_AgCs7pwW9Q8LIJnS9JmybHuTkVFD1UPJY2TTSja2rSDvwGnv2IfhI7NxA8enrw-L3He3-ETjFMMDB6EU8AYsaZ2EMDDFyECROwjwYABIeCATtER94vAQAnJBqg50enSiNbs1aBbVoj8ypoXm1r88Jb1zdsHVgdTF9INO1G8_vLdIz518dnsDZ5oLQ20qi6DdL5fJEG3qy6Kt_M-GN0oPPKq5NdHaKnxVU6uwnvHq5vZ9O7UFJgIlRUlVLTiOmSJlgShTGPlBJY4IgSVkopsOQSg5IUK0yKgvACCtCcQ8FZQodotN3bOPvWKd9mK-Olqqq8VrbzGenDiAUjHHp69ocubefq_rqNiklMeUx7Nd4q6az3TumscWaVu_cMQ7aJOIuzXcS9Pd9aL0378_f_8Nq6X5g1pabfwACIvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565253853</pqid></control><display><type>article</type><title>Predictive optical photoabsorption of Ag24Au(DMBT)18− via efficient TDDFT simulations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Medves, Marco ; Sementa, Luca ; Toffoli, Daniele ; Fronzoni, Giovanna ; Krishnadas, Kumaranchira Ramankutty ; Bürgi, Thomas ; Bonacchi, Sara ; Dainese, Tiziano ; Maran, Flavio ; Fortunelli, Alessandro ; Stener, Mauro</creator><creatorcontrib>Medves, Marco ; Sementa, Luca ; Toffoli, Daniele ; Fronzoni, Giovanna ; Krishnadas, Kumaranchira Ramankutty ; Bürgi, Thomas ; Bonacchi, Sara ; Dainese, Tiziano ; Maran, Flavio ; Fortunelli, Alessandro ; Stener, Mauro</creatorcontrib><description>We report a computational study via time-dependent density-functional theory (TDDFT) methods of the photo-absorption spectrum of an atomically precise monolayer-protected cluster (MPC), the Ag24Au(DMBT)18 single negative anion, where DMBT is the 2,4-dimethylbenzenethiolate ligand. The use of efficient simulation algorithms, i.e., the complex polarizability polTDDFT approach and the hybrid-diagonal approximation, allows us to employ a variety of exchange-correlation (xc-) functionals at an affordable computational cost. We are thus able to show, first, how the optical response of this prototypical compound, especially but not exclusively in the absorption threshold (low-energy) region, is sensitive to (1) the choice of the xc-functionals employed in the Kohn–Sham equations and the TDDFT kernel and (2) the choice of the MPC geometry. By comparing simulated spectra with precise experimental photoabsorption data obtained from room temperature down to low temperatures, we then demonstrate how a hybrid xc-functional in both the Kohn–Sham equations and the diagonal TDDFT kernel at the crystallographically determined experimental geometry is able to provide a consistent agreement between simulated and measured spectra across the entire optical region. Single-particle decomposition analysis tools finally allow us to understand the physical reason for the failure of non-hybrid approaches.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0056869</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Absorption spectra ; Algorithms ; Computing costs ; Crystallography ; Density functional theory ; Kernels ; Low temperature ; Mathematical analysis ; Photoabsorption ; Physics ; Room temperature ; Simulation</subject><ispartof>The Journal of chemical physics, 2021-08, Vol.155 (8), p.084103-084103</ispartof><rights>Author(s)</rights><rights>2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3069-e3edcf346fd371c2e1184ee91914326dcc91c8c10ec31e12bb28b0b0f880b8673</citedby><cites>FETCH-LOGICAL-c3069-e3edcf346fd371c2e1184ee91914326dcc91c8c10ec31e12bb28b0b0f880b8673</cites><orcidid>0000-0003-0906-082X ; 0000-0002-2385-9833 ; 0000-0002-5771-7307 ; 0000-0002-8627-6491 ; 0000-0002-3951-2842 ; 0000-0003-3700-7903 ; 0000-0002-5722-2355 ; 0000-0002-8225-6119 ; 0000-0001-5337-4450</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0056869$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Medves, Marco</creatorcontrib><creatorcontrib>Sementa, Luca</creatorcontrib><creatorcontrib>Toffoli, Daniele</creatorcontrib><creatorcontrib>Fronzoni, Giovanna</creatorcontrib><creatorcontrib>Krishnadas, Kumaranchira Ramankutty</creatorcontrib><creatorcontrib>Bürgi, Thomas</creatorcontrib><creatorcontrib>Bonacchi, Sara</creatorcontrib><creatorcontrib>Dainese, Tiziano</creatorcontrib><creatorcontrib>Maran, Flavio</creatorcontrib><creatorcontrib>Fortunelli, Alessandro</creatorcontrib><creatorcontrib>Stener, Mauro</creatorcontrib><title>Predictive optical photoabsorption of Ag24Au(DMBT)18− via efficient TDDFT simulations</title><title>The Journal of chemical physics</title><description>We report a computational study via time-dependent density-functional theory (TDDFT) methods of the photo-absorption spectrum of an atomically precise monolayer-protected cluster (MPC), the Ag24Au(DMBT)18 single negative anion, where DMBT is the 2,4-dimethylbenzenethiolate ligand. The use of efficient simulation algorithms, i.e., the complex polarizability polTDDFT approach and the hybrid-diagonal approximation, allows us to employ a variety of exchange-correlation (xc-) functionals at an affordable computational cost. We are thus able to show, first, how the optical response of this prototypical compound, especially but not exclusively in the absorption threshold (low-energy) region, is sensitive to (1) the choice of the xc-functionals employed in the Kohn–Sham equations and the TDDFT kernel and (2) the choice of the MPC geometry. By comparing simulated spectra with precise experimental photoabsorption data obtained from room temperature down to low temperatures, we then demonstrate how a hybrid xc-functional in both the Kohn–Sham equations and the diagonal TDDFT kernel at the crystallographically determined experimental geometry is able to provide a consistent agreement between simulated and measured spectra across the entire optical region. Single-particle decomposition analysis tools finally allow us to understand the physical reason for the failure of non-hybrid approaches.</description><subject>Absorption spectra</subject><subject>Algorithms</subject><subject>Computing costs</subject><subject>Crystallography</subject><subject>Density functional theory</subject><subject>Kernels</subject><subject>Low temperature</subject><subject>Mathematical analysis</subject><subject>Photoabsorption</subject><subject>Physics</subject><subject>Room temperature</subject><subject>Simulation</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0EFLwzAUB_AgCs7pwW9Q8LIJnS9JmybHuTkVFD1UPJY2TTSja2rSDvwGnv2IfhI7NxA8enrw-L3He3-ETjFMMDB6EU8AYsaZ2EMDDFyECROwjwYABIeCATtER94vAQAnJBqg50enSiNbs1aBbVoj8ypoXm1r88Jb1zdsHVgdTF9INO1G8_vLdIz518dnsDZ5oLQ20qi6DdL5fJEG3qy6Kt_M-GN0oPPKq5NdHaKnxVU6uwnvHq5vZ9O7UFJgIlRUlVLTiOmSJlgShTGPlBJY4IgSVkopsOQSg5IUK0yKgvACCtCcQ8FZQodotN3bOPvWKd9mK-Olqqq8VrbzGenDiAUjHHp69ocubefq_rqNiklMeUx7Nd4q6az3TumscWaVu_cMQ7aJOIuzXcS9Pd9aL0378_f_8Nq6X5g1pabfwACIvA</recordid><startdate>20210828</startdate><enddate>20210828</enddate><creator>Medves, Marco</creator><creator>Sementa, Luca</creator><creator>Toffoli, Daniele</creator><creator>Fronzoni, Giovanna</creator><creator>Krishnadas, Kumaranchira Ramankutty</creator><creator>Bürgi, Thomas</creator><creator>Bonacchi, Sara</creator><creator>Dainese, Tiziano</creator><creator>Maran, Flavio</creator><creator>Fortunelli, Alessandro</creator><creator>Stener, Mauro</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0906-082X</orcidid><orcidid>https://orcid.org/0000-0002-2385-9833</orcidid><orcidid>https://orcid.org/0000-0002-5771-7307</orcidid><orcidid>https://orcid.org/0000-0002-8627-6491</orcidid><orcidid>https://orcid.org/0000-0002-3951-2842</orcidid><orcidid>https://orcid.org/0000-0003-3700-7903</orcidid><orcidid>https://orcid.org/0000-0002-5722-2355</orcidid><orcidid>https://orcid.org/0000-0002-8225-6119</orcidid><orcidid>https://orcid.org/0000-0001-5337-4450</orcidid></search><sort><creationdate>20210828</creationdate><title>Predictive optical photoabsorption of Ag24Au(DMBT)18− via efficient TDDFT simulations</title><author>Medves, Marco ; Sementa, Luca ; Toffoli, Daniele ; Fronzoni, Giovanna ; Krishnadas, Kumaranchira Ramankutty ; Bürgi, Thomas ; Bonacchi, Sara ; Dainese, Tiziano ; Maran, Flavio ; Fortunelli, Alessandro ; Stener, Mauro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3069-e3edcf346fd371c2e1184ee91914326dcc91c8c10ec31e12bb28b0b0f880b8673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption spectra</topic><topic>Algorithms</topic><topic>Computing costs</topic><topic>Crystallography</topic><topic>Density functional theory</topic><topic>Kernels</topic><topic>Low temperature</topic><topic>Mathematical analysis</topic><topic>Photoabsorption</topic><topic>Physics</topic><topic>Room temperature</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Medves, Marco</creatorcontrib><creatorcontrib>Sementa, Luca</creatorcontrib><creatorcontrib>Toffoli, Daniele</creatorcontrib><creatorcontrib>Fronzoni, Giovanna</creatorcontrib><creatorcontrib>Krishnadas, Kumaranchira Ramankutty</creatorcontrib><creatorcontrib>Bürgi, Thomas</creatorcontrib><creatorcontrib>Bonacchi, Sara</creatorcontrib><creatorcontrib>Dainese, Tiziano</creatorcontrib><creatorcontrib>Maran, Flavio</creatorcontrib><creatorcontrib>Fortunelli, Alessandro</creatorcontrib><creatorcontrib>Stener, Mauro</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Medves, Marco</au><au>Sementa, Luca</au><au>Toffoli, Daniele</au><au>Fronzoni, Giovanna</au><au>Krishnadas, Kumaranchira Ramankutty</au><au>Bürgi, Thomas</au><au>Bonacchi, Sara</au><au>Dainese, Tiziano</au><au>Maran, Flavio</au><au>Fortunelli, Alessandro</au><au>Stener, Mauro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive optical photoabsorption of Ag24Au(DMBT)18− via efficient TDDFT simulations</atitle><jtitle>The Journal of chemical physics</jtitle><date>2021-08-28</date><risdate>2021</risdate><volume>155</volume><issue>8</issue><spage>084103</spage><epage>084103</epage><pages>084103-084103</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We report a computational study via time-dependent density-functional theory (TDDFT) methods of the photo-absorption spectrum of an atomically precise monolayer-protected cluster (MPC), the Ag24Au(DMBT)18 single negative anion, where DMBT is the 2,4-dimethylbenzenethiolate ligand. The use of efficient simulation algorithms, i.e., the complex polarizability polTDDFT approach and the hybrid-diagonal approximation, allows us to employ a variety of exchange-correlation (xc-) functionals at an affordable computational cost. We are thus able to show, first, how the optical response of this prototypical compound, especially but not exclusively in the absorption threshold (low-energy) region, is sensitive to (1) the choice of the xc-functionals employed in the Kohn–Sham equations and the TDDFT kernel and (2) the choice of the MPC geometry. By comparing simulated spectra with precise experimental photoabsorption data obtained from room temperature down to low temperatures, we then demonstrate how a hybrid xc-functional in both the Kohn–Sham equations and the diagonal TDDFT kernel at the crystallographically determined experimental geometry is able to provide a consistent agreement between simulated and measured spectra across the entire optical region. Single-particle decomposition analysis tools finally allow us to understand the physical reason for the failure of non-hybrid approaches.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0056869</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0906-082X</orcidid><orcidid>https://orcid.org/0000-0002-2385-9833</orcidid><orcidid>https://orcid.org/0000-0002-5771-7307</orcidid><orcidid>https://orcid.org/0000-0002-8627-6491</orcidid><orcidid>https://orcid.org/0000-0002-3951-2842</orcidid><orcidid>https://orcid.org/0000-0003-3700-7903</orcidid><orcidid>https://orcid.org/0000-0002-5722-2355</orcidid><orcidid>https://orcid.org/0000-0002-8225-6119</orcidid><orcidid>https://orcid.org/0000-0001-5337-4450</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2021-08, Vol.155 (8), p.084103-084103
issn 0021-9606
1089-7690
language eng
recordid cdi_scitation_primary_10_1063_5_0056869
source AIP Journals Complete; Alma/SFX Local Collection
subjects Absorption spectra
Algorithms
Computing costs
Crystallography
Density functional theory
Kernels
Low temperature
Mathematical analysis
Photoabsorption
Physics
Room temperature
Simulation
title Predictive optical photoabsorption of Ag24Au(DMBT)18− via efficient TDDFT simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A13%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20optical%20photoabsorption%20of%20Ag24Au(DMBT)18%E2%88%92%20via%20efficient%20TDDFT%20simulations&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Medves,%20Marco&rft.date=2021-08-28&rft.volume=155&rft.issue=8&rft.spage=084103&rft.epage=084103&rft.pages=084103-084103&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0056869&rft_dat=%3Cproquest_scita%3E2568596280%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565253853&rft_id=info:pmid/&rfr_iscdi=true