Quantifying a partial polyamorphic transition in a cerium-based metallic glass during cooling

Cerium-based metallic glasses are prototype polyamorphous systems with pressure-induced polyamorphic transitions extensively reported. Cooling typically has a similar effect on materials as compression with regard to reducing volume. However, previous studies show dramatically different behavior of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2021-10, Vol.130 (14)
Hauptverfasser: Chen, Zhi, Sun, Zhaoyue, Lan, Fujun, Zhang, Xin, Yin, Ziliang, Liu, Ye, Zeng, Zhidan, Ren, Yang, Lou, Hongbo, Shen, Baolong, Zeng, Qiaoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 14
container_start_page
container_title Journal of applied physics
container_volume 130
creator Chen, Zhi
Sun, Zhaoyue
Lan, Fujun
Zhang, Xin
Yin, Ziliang
Liu, Ye
Zeng, Zhidan
Ren, Yang
Lou, Hongbo
Shen, Baolong
Zeng, Qiaoshi
description Cerium-based metallic glasses are prototype polyamorphous systems with pressure-induced polyamorphic transitions extensively reported. Cooling typically has a similar effect on materials as compression with regard to reducing volume. However, previous studies show dramatically different behavior of Ce-based metallic glasses between cooling and compression, whose origin remains unclear. Here, using in situ low-temperature synchrotron high-energy x-ray diffraction, the structural evolution of a Ce68Al10Cu20Co2 metallic glass is accurately determined and analyzed by a structure factor and a reduced pair distribution function (PDF) during cooling from 298 to 83 K. An unusually large linear thermal expansion coefficient is revealed, which is associated with both continuous but inconsistent structural changes between the two subpeaks of the first atomic shell in terms of average bond lengths and coordination numbers. These phenomena are suggested to be attributed to a gradual 4f electron delocalization of only a minimal amount (∼2.6% at 83 K) of Ce atoms by quantitative analysis of the PDF data. However, a previously expected global polymorphic transition from a low-density amorphous state to a high-density amorphous state with an abrupt volume collapse is not observed. Moreover, electrical resistivity also shows a continuous increase during cooling without any sharp change. It is clarified that cryogenic temperatures could facilitate but are not powerful enough alone to trigger a global polymorphic transition in the Ce68Al10Cu20Co2 metallic glass, suggesting a wide distribution of its local atomic environment.
doi_str_mv 10.1063/5.0054997
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0054997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581080111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-c74bac1709535488b786df533ad7fb40c83f66eadd775494db4198bcf30674dd3</originalsourceid><addsrcrecordid>eNqd0MtKxDAUBuAgCo6jC9-g6EqhmkyaJlnK4A0GRNClhDSXmQydpiapMG9vSgfcuzqbj_-c8wNwieAdgjW-J3cQkopzegRmCDJeUkLgMZhBuEAl45SfgrMYtxAixDCfga_3QXbJ2b3r1oUsehmSk23R-3Yvdz70G6eKFGQXXXK-K1yXkTLBDbuykdHoYmeSbNus1q2MsdBDGJOU922e5-DEyjaai8Ocg8-nx4_lS7l6e35dPqxKhRlPpaJVIxWikBNMKsYaymptCcZSU9tUUDFs69pIrSnNz1W6qRBnjbIY1rTSGs_B1ZTrY3IiKpeM2ijfdUYlgdgiR7GMrifUB_89mJjE1g-hy3eJBWG5rNwJyupmUir4GIOxog9uJ8NeICjGigURh4qzvZ3suFGOBf0P__jwB0WvLf4FC6CKUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581080111</pqid></control><display><type>article</type><title>Quantifying a partial polyamorphic transition in a cerium-based metallic glass during cooling</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Chen, Zhi ; Sun, Zhaoyue ; Lan, Fujun ; Zhang, Xin ; Yin, Ziliang ; Liu, Ye ; Zeng, Zhidan ; Ren, Yang ; Lou, Hongbo ; Shen, Baolong ; Zeng, Qiaoshi</creator><creatorcontrib>Chen, Zhi ; Sun, Zhaoyue ; Lan, Fujun ; Zhang, Xin ; Yin, Ziliang ; Liu, Ye ; Zeng, Zhidan ; Ren, Yang ; Lou, Hongbo ; Shen, Baolong ; Zeng, Qiaoshi</creatorcontrib><description>Cerium-based metallic glasses are prototype polyamorphous systems with pressure-induced polyamorphic transitions extensively reported. Cooling typically has a similar effect on materials as compression with regard to reducing volume. However, previous studies show dramatically different behavior of Ce-based metallic glasses between cooling and compression, whose origin remains unclear. Here, using in situ low-temperature synchrotron high-energy x-ray diffraction, the structural evolution of a Ce68Al10Cu20Co2 metallic glass is accurately determined and analyzed by a structure factor and a reduced pair distribution function (PDF) during cooling from 298 to 83 K. An unusually large linear thermal expansion coefficient is revealed, which is associated with both continuous but inconsistent structural changes between the two subpeaks of the first atomic shell in terms of average bond lengths and coordination numbers. These phenomena are suggested to be attributed to a gradual 4f electron delocalization of only a minimal amount (∼2.6% at 83 K) of Ce atoms by quantitative analysis of the PDF data. However, a previously expected global polymorphic transition from a low-density amorphous state to a high-density amorphous state with an abrupt volume collapse is not observed. Moreover, electrical resistivity also shows a continuous increase during cooling without any sharp change. It is clarified that cryogenic temperatures could facilitate but are not powerful enough alone to trigger a global polymorphic transition in the Ce68Al10Cu20Co2 metallic glass, suggesting a wide distribution of its local atomic environment.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0054997</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Amorphous materials ; Cerium ; Cooling ; Coordination numbers ; Cryogenic temperature ; Density ; Distribution functions ; Low temperature ; Metallic glasses ; Structure factor ; Synchrotrons ; Thermal expansion</subject><ispartof>Journal of applied physics, 2021-10, Vol.130 (14)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-c74bac1709535488b786df533ad7fb40c83f66eadd775494db4198bcf30674dd3</citedby><cites>FETCH-LOGICAL-c389t-c74bac1709535488b786df533ad7fb40c83f66eadd775494db4198bcf30674dd3</cites><orcidid>0000-0001-5960-1378 ; 0000-0003-4283-2393 ; 0000-0002-5056-2576 ; 0000000250562576 ; 0000000342832393 ; 0000000159601378</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0054997$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4497,27903,27904,76130</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1825338$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Zhi</creatorcontrib><creatorcontrib>Sun, Zhaoyue</creatorcontrib><creatorcontrib>Lan, Fujun</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Yin, Ziliang</creatorcontrib><creatorcontrib>Liu, Ye</creatorcontrib><creatorcontrib>Zeng, Zhidan</creatorcontrib><creatorcontrib>Ren, Yang</creatorcontrib><creatorcontrib>Lou, Hongbo</creatorcontrib><creatorcontrib>Shen, Baolong</creatorcontrib><creatorcontrib>Zeng, Qiaoshi</creatorcontrib><title>Quantifying a partial polyamorphic transition in a cerium-based metallic glass during cooling</title><title>Journal of applied physics</title><description>Cerium-based metallic glasses are prototype polyamorphous systems with pressure-induced polyamorphic transitions extensively reported. Cooling typically has a similar effect on materials as compression with regard to reducing volume. However, previous studies show dramatically different behavior of Ce-based metallic glasses between cooling and compression, whose origin remains unclear. Here, using in situ low-temperature synchrotron high-energy x-ray diffraction, the structural evolution of a Ce68Al10Cu20Co2 metallic glass is accurately determined and analyzed by a structure factor and a reduced pair distribution function (PDF) during cooling from 298 to 83 K. An unusually large linear thermal expansion coefficient is revealed, which is associated with both continuous but inconsistent structural changes between the two subpeaks of the first atomic shell in terms of average bond lengths and coordination numbers. These phenomena are suggested to be attributed to a gradual 4f electron delocalization of only a minimal amount (∼2.6% at 83 K) of Ce atoms by quantitative analysis of the PDF data. However, a previously expected global polymorphic transition from a low-density amorphous state to a high-density amorphous state with an abrupt volume collapse is not observed. Moreover, electrical resistivity also shows a continuous increase during cooling without any sharp change. It is clarified that cryogenic temperatures could facilitate but are not powerful enough alone to trigger a global polymorphic transition in the Ce68Al10Cu20Co2 metallic glass, suggesting a wide distribution of its local atomic environment.</description><subject>Amorphous materials</subject><subject>Cerium</subject><subject>Cooling</subject><subject>Coordination numbers</subject><subject>Cryogenic temperature</subject><subject>Density</subject><subject>Distribution functions</subject><subject>Low temperature</subject><subject>Metallic glasses</subject><subject>Structure factor</subject><subject>Synchrotrons</subject><subject>Thermal expansion</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0MtKxDAUBuAgCo6jC9-g6EqhmkyaJlnK4A0GRNClhDSXmQydpiapMG9vSgfcuzqbj_-c8wNwieAdgjW-J3cQkopzegRmCDJeUkLgMZhBuEAl45SfgrMYtxAixDCfga_3QXbJ2b3r1oUsehmSk23R-3Yvdz70G6eKFGQXXXK-K1yXkTLBDbuykdHoYmeSbNus1q2MsdBDGJOU922e5-DEyjaai8Ocg8-nx4_lS7l6e35dPqxKhRlPpaJVIxWikBNMKsYaymptCcZSU9tUUDFs69pIrSnNz1W6qRBnjbIY1rTSGs_B1ZTrY3IiKpeM2ijfdUYlgdgiR7GMrifUB_89mJjE1g-hy3eJBWG5rNwJyupmUir4GIOxog9uJ8NeICjGigURh4qzvZ3suFGOBf0P__jwB0WvLf4FC6CKUg</recordid><startdate>20211014</startdate><enddate>20211014</enddate><creator>Chen, Zhi</creator><creator>Sun, Zhaoyue</creator><creator>Lan, Fujun</creator><creator>Zhang, Xin</creator><creator>Yin, Ziliang</creator><creator>Liu, Ye</creator><creator>Zeng, Zhidan</creator><creator>Ren, Yang</creator><creator>Lou, Hongbo</creator><creator>Shen, Baolong</creator><creator>Zeng, Qiaoshi</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5960-1378</orcidid><orcidid>https://orcid.org/0000-0003-4283-2393</orcidid><orcidid>https://orcid.org/0000-0002-5056-2576</orcidid><orcidid>https://orcid.org/0000000250562576</orcidid><orcidid>https://orcid.org/0000000342832393</orcidid><orcidid>https://orcid.org/0000000159601378</orcidid></search><sort><creationdate>20211014</creationdate><title>Quantifying a partial polyamorphic transition in a cerium-based metallic glass during cooling</title><author>Chen, Zhi ; Sun, Zhaoyue ; Lan, Fujun ; Zhang, Xin ; Yin, Ziliang ; Liu, Ye ; Zeng, Zhidan ; Ren, Yang ; Lou, Hongbo ; Shen, Baolong ; Zeng, Qiaoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-c74bac1709535488b786df533ad7fb40c83f66eadd775494db4198bcf30674dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amorphous materials</topic><topic>Cerium</topic><topic>Cooling</topic><topic>Coordination numbers</topic><topic>Cryogenic temperature</topic><topic>Density</topic><topic>Distribution functions</topic><topic>Low temperature</topic><topic>Metallic glasses</topic><topic>Structure factor</topic><topic>Synchrotrons</topic><topic>Thermal expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhi</creatorcontrib><creatorcontrib>Sun, Zhaoyue</creatorcontrib><creatorcontrib>Lan, Fujun</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Yin, Ziliang</creatorcontrib><creatorcontrib>Liu, Ye</creatorcontrib><creatorcontrib>Zeng, Zhidan</creatorcontrib><creatorcontrib>Ren, Yang</creatorcontrib><creatorcontrib>Lou, Hongbo</creatorcontrib><creatorcontrib>Shen, Baolong</creatorcontrib><creatorcontrib>Zeng, Qiaoshi</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhi</au><au>Sun, Zhaoyue</au><au>Lan, Fujun</au><au>Zhang, Xin</au><au>Yin, Ziliang</au><au>Liu, Ye</au><au>Zeng, Zhidan</au><au>Ren, Yang</au><au>Lou, Hongbo</au><au>Shen, Baolong</au><au>Zeng, Qiaoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying a partial polyamorphic transition in a cerium-based metallic glass during cooling</atitle><jtitle>Journal of applied physics</jtitle><date>2021-10-14</date><risdate>2021</risdate><volume>130</volume><issue>14</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Cerium-based metallic glasses are prototype polyamorphous systems with pressure-induced polyamorphic transitions extensively reported. Cooling typically has a similar effect on materials as compression with regard to reducing volume. However, previous studies show dramatically different behavior of Ce-based metallic glasses between cooling and compression, whose origin remains unclear. Here, using in situ low-temperature synchrotron high-energy x-ray diffraction, the structural evolution of a Ce68Al10Cu20Co2 metallic glass is accurately determined and analyzed by a structure factor and a reduced pair distribution function (PDF) during cooling from 298 to 83 K. An unusually large linear thermal expansion coefficient is revealed, which is associated with both continuous but inconsistent structural changes between the two subpeaks of the first atomic shell in terms of average bond lengths and coordination numbers. These phenomena are suggested to be attributed to a gradual 4f electron delocalization of only a minimal amount (∼2.6% at 83 K) of Ce atoms by quantitative analysis of the PDF data. However, a previously expected global polymorphic transition from a low-density amorphous state to a high-density amorphous state with an abrupt volume collapse is not observed. Moreover, electrical resistivity also shows a continuous increase during cooling without any sharp change. It is clarified that cryogenic temperatures could facilitate but are not powerful enough alone to trigger a global polymorphic transition in the Ce68Al10Cu20Co2 metallic glass, suggesting a wide distribution of its local atomic environment.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0054997</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-5960-1378</orcidid><orcidid>https://orcid.org/0000-0003-4283-2393</orcidid><orcidid>https://orcid.org/0000-0002-5056-2576</orcidid><orcidid>https://orcid.org/0000000250562576</orcidid><orcidid>https://orcid.org/0000000342832393</orcidid><orcidid>https://orcid.org/0000000159601378</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2021-10, Vol.130 (14)
issn 0021-8979
1089-7550
language eng
recordid cdi_scitation_primary_10_1063_5_0054997
source AIP Journals Complete; Alma/SFX Local Collection
subjects Amorphous materials
Cerium
Cooling
Coordination numbers
Cryogenic temperature
Density
Distribution functions
Low temperature
Metallic glasses
Structure factor
Synchrotrons
Thermal expansion
title Quantifying a partial polyamorphic transition in a cerium-based metallic glass during cooling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A00%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20a%20partial%20polyamorphic%20transition%20in%20a%20cerium-based%20metallic%20glass%20during%20cooling&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Chen,%20Zhi&rft.date=2021-10-14&rft.volume=130&rft.issue=14&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0054997&rft_dat=%3Cproquest_scita%3E2581080111%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581080111&rft_id=info:pmid/&rfr_iscdi=true