Spin(7)-manifolds and multisymplectic geometry
We utilize Spin(7) identities to prove that the Cayley four-form associated with a torsion-free Spin(7)-structure is non-degenerate in the sense of multisymplectic geometry. Therefore, Spin(7) geometry may be treated as a special case of multisymplectic geometry. We then capitalize on this relations...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2021-12, Vol.62 (12) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Journal of mathematical physics |
container_volume | 62 |
creator | Kennon, Aaron |
description | We utilize Spin(7) identities to prove that the Cayley four-form associated with a torsion-free Spin(7)-structure is non-degenerate in the sense of multisymplectic geometry. Therefore, Spin(7) geometry may be treated as a special case of multisymplectic geometry. We then capitalize on this relationship to make statements about Hamiltonian multivector fields and differential forms associated with torsion-free Spin(7)-structures. |
doi_str_mv | 10.1063/5.0054853 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0054853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2614899508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-22b12f6ffd30793adc4d6f445e7fef69e02fe143ba0ba21286d11641af55ea6f3</originalsourceid><addsrcrecordid>eNp90M1KAzEUBeAgCtbqwjcouLHC1HszSSazlFJ_oOBCXYd0kkjKzGRMUqFvb6VFF4Krs_k4Bw4hlwgzBFHe8hkAZ5KXR2SEIOuiElwekxEApQVlUp6Ss5TWAIiSsRGZvQy-v66mRad770Jr0kT3ZtJt2uzTthta22TfTN5t6GyO23Ny4nSb7MUhx-TtfvE6fyyWzw9P87tl0VBZ5YLSFVInnDMlVHWpTcOMcIxxWznrRG2BOousXGlYaYpUCoMoGGrHudXClWNyte8dYvjY2JTVOmxiv5tUVCCTdc1B7tR0r5oYUorWqSH6TsetQlDfdyiuDnfs7M3epsZnnX3of_BniL9QDcb9h_82fwHNXmzb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2614899508</pqid></control><display><type>article</type><title>Spin(7)-manifolds and multisymplectic geometry</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kennon, Aaron</creator><creatorcontrib>Kennon, Aaron</creatorcontrib><description>We utilize Spin(7) identities to prove that the Cayley four-form associated with a torsion-free Spin(7)-structure is non-degenerate in the sense of multisymplectic geometry. Therefore, Spin(7) geometry may be treated as a special case of multisymplectic geometry. We then capitalize on this relationship to make statements about Hamiltonian multivector fields and differential forms associated with torsion-free Spin(7)-structures.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0054853</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Geometry ; Manifolds (mathematics) ; Physics</subject><ispartof>Journal of mathematical physics, 2021-12, Vol.62 (12)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-22b12f6ffd30793adc4d6f445e7fef69e02fe143ba0ba21286d11641af55ea6f3</cites><orcidid>0000-0002-4194-9533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0054853$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Kennon, Aaron</creatorcontrib><title>Spin(7)-manifolds and multisymplectic geometry</title><title>Journal of mathematical physics</title><description>We utilize Spin(7) identities to prove that the Cayley four-form associated with a torsion-free Spin(7)-structure is non-degenerate in the sense of multisymplectic geometry. Therefore, Spin(7) geometry may be treated as a special case of multisymplectic geometry. We then capitalize on this relationship to make statements about Hamiltonian multivector fields and differential forms associated with torsion-free Spin(7)-structures.</description><subject>Geometry</subject><subject>Manifolds (mathematics)</subject><subject>Physics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEUBeAgCtbqwjcouLHC1HszSSazlFJ_oOBCXYd0kkjKzGRMUqFvb6VFF4Krs_k4Bw4hlwgzBFHe8hkAZ5KXR2SEIOuiElwekxEApQVlUp6Ss5TWAIiSsRGZvQy-v66mRad770Jr0kT3ZtJt2uzTthta22TfTN5t6GyO23Ny4nSb7MUhx-TtfvE6fyyWzw9P87tl0VBZ5YLSFVInnDMlVHWpTcOMcIxxWznrRG2BOousXGlYaYpUCoMoGGrHudXClWNyte8dYvjY2JTVOmxiv5tUVCCTdc1B7tR0r5oYUorWqSH6TsetQlDfdyiuDnfs7M3epsZnnX3of_BniL9QDcb9h_82fwHNXmzb</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Kennon, Aaron</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4194-9533</orcidid></search><sort><creationdate>20211201</creationdate><title>Spin(7)-manifolds and multisymplectic geometry</title><author>Kennon, Aaron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-22b12f6ffd30793adc4d6f445e7fef69e02fe143ba0ba21286d11641af55ea6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Geometry</topic><topic>Manifolds (mathematics)</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kennon, Aaron</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kennon, Aaron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin(7)-manifolds and multisymplectic geometry</atitle><jtitle>Journal of mathematical physics</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>62</volume><issue>12</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We utilize Spin(7) identities to prove that the Cayley four-form associated with a torsion-free Spin(7)-structure is non-degenerate in the sense of multisymplectic geometry. Therefore, Spin(7) geometry may be treated as a special case of multisymplectic geometry. We then capitalize on this relationship to make statements about Hamiltonian multivector fields and differential forms associated with torsion-free Spin(7)-structures.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0054853</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4194-9533</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2021-12, Vol.62 (12) |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0054853 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Geometry Manifolds (mathematics) Physics |
title | Spin(7)-manifolds and multisymplectic geometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A20%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin(7)-manifolds%20and%20multisymplectic%20geometry&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Kennon,%20Aaron&rft.date=2021-12-01&rft.volume=62&rft.issue=12&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0054853&rft_dat=%3Cproquest_scita%3E2614899508%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2614899508&rft_id=info:pmid/&rfr_iscdi=true |