Use of biodegradable colloids and carbon black nanofluids for solar energy applications

The conversion of solar energy to heat can be performed in direct absorption solar collectors, where the radiation from the sun is absorbed by a fluid. There are various types of fluids that can be used, and recently, nanofluids (i.e., liquids with immersed nanoparticles) have been investigated by r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2021-05, Vol.11 (5), p.055214-055214-8
Hauptverfasser: Kosinska, A., Balakin, B. V., Kosinski, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 055214-8
container_issue 5
container_start_page 055214
container_title AIP advances
container_volume 11
creator Kosinska, A.
Balakin, B. V.
Kosinski, P.
description The conversion of solar energy to heat can be performed in direct absorption solar collectors, where the radiation from the sun is absorbed by a fluid. There are various types of fluids that can be used, and recently, nanofluids (i.e., liquids with immersed nanoparticles) have been investigated by researchers. Nevertheless, nanofluids have inherent drawbacks such as cost, toxicity, and clogging. This paper considers the use of fluids that are inexpensive and neutral to the environment, namely, coffee colloids. These types of fluids have already been tested for solar energy applications, but they have not yet been compared with nanofluids. In this research, we conducted a series of simple experiments where both coffee colloids and carbon black nanofluids were analyzed under the same conditions. According to our results, the thermal efficiency of coffee colloid and the nanofluid systems is, respectively, 12% and 16% greater than that of pure water. In addition to the experiments, we developed a mathematical model that is based on the Beer–Lambert law and a heat balance equation. Despite its simplicity, the model predicts the results relatively well.
doi_str_mv 10.1063/5.0053258
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0053258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0d1f760ca9bf46f1b4248b12e0ab33f2</doaj_id><sourcerecordid>2525152455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-33f1574c8972a1610db06329e09a398db4d359cb6acbd3610dd39b27a61ddae93</originalsourceid><addsrcrecordid>eNp9kclKA0EQhgdRMMQcfIMGTwqJvU6mjxJcAgEvBo9N9RYmttNj90TI2ztZUEGwLlVUffy1FcUlwROCS3YrJhgLRkV1UgwoEdWYUVqe_orPi1HOa9wblwRXfFC8LrND0SNdR-tWCSzo4JCJIcTaZgSNRQaSjg3SAcwbaqCJPmx2NR8TyjFAQq5xabVF0LahNtDVsckXxZmHkN3o6IfF8uH-ZfY0Xjw_zmd3i7HhtOrGjHkiptxUckqBlARb3S9CpcMSmKys5pYJaXQJRlu2q1smNZ1CSawFJ9mwmB90bYS1alP9DmmrItRqn4hppSB1tQlOYUv8tMQGpPa89ERzyitNqMOg-zlor3V10GpT_Ni43Kl13KSmH19RQQURlAvRU9cHyqSYc3L-uyvBavcGJdTxDT17c2Czqbv9Yb7hz5h-QNVa_x_8V_kLMTWVFQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525152455</pqid></control><display><type>article</type><title>Use of biodegradable colloids and carbon black nanofluids for solar energy applications</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kosinska, A. ; Balakin, B. V. ; Kosinski, P.</creator><creatorcontrib>Kosinska, A. ; Balakin, B. V. ; Kosinski, P.</creatorcontrib><description>The conversion of solar energy to heat can be performed in direct absorption solar collectors, where the radiation from the sun is absorbed by a fluid. There are various types of fluids that can be used, and recently, nanofluids (i.e., liquids with immersed nanoparticles) have been investigated by researchers. Nevertheless, nanofluids have inherent drawbacks such as cost, toxicity, and clogging. This paper considers the use of fluids that are inexpensive and neutral to the environment, namely, coffee colloids. These types of fluids have already been tested for solar energy applications, but they have not yet been compared with nanofluids. In this research, we conducted a series of simple experiments where both coffee colloids and carbon black nanofluids were analyzed under the same conditions. According to our results, the thermal efficiency of coffee colloid and the nanofluid systems is, respectively, 12% and 16% greater than that of pure water. In addition to the experiments, we developed a mathematical model that is based on the Beer–Lambert law and a heat balance equation. Despite its simplicity, the model predicts the results relatively well.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0053258</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Biodegradability ; Bouguer law ; Carbon ; Carbon black ; Coffee ; Colloids ; Computational fluid dynamics ; Heat balance ; Mathematical models ; Nanofluids ; Nanoparticles ; Solar collectors ; Solar energy ; Solar energy conversion ; Thermodynamic efficiency ; Toxicity</subject><ispartof>AIP advances, 2021-05, Vol.11 (5), p.055214-055214-8</ispartof><rights>Author(s)</rights><rights>2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-33f1574c8972a1610db06329e09a398db4d359cb6acbd3610dd39b27a61ddae93</citedby><cites>FETCH-LOGICAL-c428t-33f1574c8972a1610db06329e09a398db4d359cb6acbd3610dd39b27a61ddae93</cites><orcidid>0000-0002-5452-7532 ; 0000-0003-0560-6098 ; 0000-0001-8842-6556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2095,27903,27904</link.rule.ids></links><search><creatorcontrib>Kosinska, A.</creatorcontrib><creatorcontrib>Balakin, B. V.</creatorcontrib><creatorcontrib>Kosinski, P.</creatorcontrib><title>Use of biodegradable colloids and carbon black nanofluids for solar energy applications</title><title>AIP advances</title><description>The conversion of solar energy to heat can be performed in direct absorption solar collectors, where the radiation from the sun is absorbed by a fluid. There are various types of fluids that can be used, and recently, nanofluids (i.e., liquids with immersed nanoparticles) have been investigated by researchers. Nevertheless, nanofluids have inherent drawbacks such as cost, toxicity, and clogging. This paper considers the use of fluids that are inexpensive and neutral to the environment, namely, coffee colloids. These types of fluids have already been tested for solar energy applications, but they have not yet been compared with nanofluids. In this research, we conducted a series of simple experiments where both coffee colloids and carbon black nanofluids were analyzed under the same conditions. According to our results, the thermal efficiency of coffee colloid and the nanofluid systems is, respectively, 12% and 16% greater than that of pure water. In addition to the experiments, we developed a mathematical model that is based on the Beer–Lambert law and a heat balance equation. Despite its simplicity, the model predicts the results relatively well.</description><subject>Biodegradability</subject><subject>Bouguer law</subject><subject>Carbon</subject><subject>Carbon black</subject><subject>Coffee</subject><subject>Colloids</subject><subject>Computational fluid dynamics</subject><subject>Heat balance</subject><subject>Mathematical models</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Solar collectors</subject><subject>Solar energy</subject><subject>Solar energy conversion</subject><subject>Thermodynamic efficiency</subject><subject>Toxicity</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kclKA0EQhgdRMMQcfIMGTwqJvU6mjxJcAgEvBo9N9RYmttNj90TI2ztZUEGwLlVUffy1FcUlwROCS3YrJhgLRkV1UgwoEdWYUVqe_orPi1HOa9wblwRXfFC8LrND0SNdR-tWCSzo4JCJIcTaZgSNRQaSjg3SAcwbaqCJPmx2NR8TyjFAQq5xabVF0LahNtDVsckXxZmHkN3o6IfF8uH-ZfY0Xjw_zmd3i7HhtOrGjHkiptxUckqBlARb3S9CpcMSmKys5pYJaXQJRlu2q1smNZ1CSawFJ9mwmB90bYS1alP9DmmrItRqn4hppSB1tQlOYUv8tMQGpPa89ERzyitNqMOg-zlor3V10GpT_Ni43Kl13KSmH19RQQURlAvRU9cHyqSYc3L-uyvBavcGJdTxDT17c2Czqbv9Yb7hz5h-QNVa_x_8V_kLMTWVFQ</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Kosinska, A.</creator><creator>Balakin, B. V.</creator><creator>Kosinski, P.</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5452-7532</orcidid><orcidid>https://orcid.org/0000-0003-0560-6098</orcidid><orcidid>https://orcid.org/0000-0001-8842-6556</orcidid></search><sort><creationdate>20210501</creationdate><title>Use of biodegradable colloids and carbon black nanofluids for solar energy applications</title><author>Kosinska, A. ; Balakin, B. V. ; Kosinski, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-33f1574c8972a1610db06329e09a398db4d359cb6acbd3610dd39b27a61ddae93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biodegradability</topic><topic>Bouguer law</topic><topic>Carbon</topic><topic>Carbon black</topic><topic>Coffee</topic><topic>Colloids</topic><topic>Computational fluid dynamics</topic><topic>Heat balance</topic><topic>Mathematical models</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Solar collectors</topic><topic>Solar energy</topic><topic>Solar energy conversion</topic><topic>Thermodynamic efficiency</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kosinska, A.</creatorcontrib><creatorcontrib>Balakin, B. V.</creatorcontrib><creatorcontrib>Kosinski, P.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kosinska, A.</au><au>Balakin, B. V.</au><au>Kosinski, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of biodegradable colloids and carbon black nanofluids for solar energy applications</atitle><jtitle>AIP advances</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>11</volume><issue>5</issue><spage>055214</spage><epage>055214-8</epage><pages>055214-055214-8</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>The conversion of solar energy to heat can be performed in direct absorption solar collectors, where the radiation from the sun is absorbed by a fluid. There are various types of fluids that can be used, and recently, nanofluids (i.e., liquids with immersed nanoparticles) have been investigated by researchers. Nevertheless, nanofluids have inherent drawbacks such as cost, toxicity, and clogging. This paper considers the use of fluids that are inexpensive and neutral to the environment, namely, coffee colloids. These types of fluids have already been tested for solar energy applications, but they have not yet been compared with nanofluids. In this research, we conducted a series of simple experiments where both coffee colloids and carbon black nanofluids were analyzed under the same conditions. According to our results, the thermal efficiency of coffee colloid and the nanofluid systems is, respectively, 12% and 16% greater than that of pure water. In addition to the experiments, we developed a mathematical model that is based on the Beer–Lambert law and a heat balance equation. Despite its simplicity, the model predicts the results relatively well.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0053258</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5452-7532</orcidid><orcidid>https://orcid.org/0000-0003-0560-6098</orcidid><orcidid>https://orcid.org/0000-0001-8842-6556</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2021-05, Vol.11 (5), p.055214-055214-8
issn 2158-3226
2158-3226
language eng
recordid cdi_scitation_primary_10_1063_5_0053258
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biodegradability
Bouguer law
Carbon
Carbon black
Coffee
Colloids
Computational fluid dynamics
Heat balance
Mathematical models
Nanofluids
Nanoparticles
Solar collectors
Solar energy
Solar energy conversion
Thermodynamic efficiency
Toxicity
title Use of biodegradable colloids and carbon black nanofluids for solar energy applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20biodegradable%20colloids%20and%20carbon%20black%20nanofluids%20for%20solar%20energy%20applications&rft.jtitle=AIP%20advances&rft.au=Kosinska,%20A.&rft.date=2021-05-01&rft.volume=11&rft.issue=5&rft.spage=055214&rft.epage=055214-8&rft.pages=055214-055214-8&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0053258&rft_dat=%3Cproquest_scita%3E2525152455%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2525152455&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_0d1f760ca9bf46f1b4248b12e0ab33f2&rfr_iscdi=true