Use of biodegradable colloids and carbon black nanofluids for solar energy applications
The conversion of solar energy to heat can be performed in direct absorption solar collectors, where the radiation from the sun is absorbed by a fluid. There are various types of fluids that can be used, and recently, nanofluids (i.e., liquids with immersed nanoparticles) have been investigated by r...
Gespeichert in:
Veröffentlicht in: | AIP advances 2021-05, Vol.11 (5), p.055214-055214-8 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 055214-8 |
---|---|
container_issue | 5 |
container_start_page | 055214 |
container_title | AIP advances |
container_volume | 11 |
creator | Kosinska, A. Balakin, B. V. Kosinski, P. |
description | The conversion of solar energy to heat can be performed in direct absorption solar collectors, where the radiation from the sun is absorbed by a fluid. There are various types of fluids that can be used, and recently, nanofluids (i.e., liquids with immersed nanoparticles) have been investigated by researchers. Nevertheless, nanofluids have inherent drawbacks such as cost, toxicity, and clogging. This paper considers the use of fluids that are inexpensive and neutral to the environment, namely, coffee colloids. These types of fluids have already been tested for solar energy applications, but they have not yet been compared with nanofluids. In this research, we conducted a series of simple experiments where both coffee colloids and carbon black nanofluids were analyzed under the same conditions. According to our results, the thermal efficiency of coffee colloid and the nanofluid systems is, respectively, 12% and 16% greater than that of pure water. In addition to the experiments, we developed a mathematical model that is based on the Beer–Lambert law and a heat balance equation. Despite its simplicity, the model predicts the results relatively well. |
doi_str_mv | 10.1063/5.0053258 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0053258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0d1f760ca9bf46f1b4248b12e0ab33f2</doaj_id><sourcerecordid>2525152455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-33f1574c8972a1610db06329e09a398db4d359cb6acbd3610dd39b27a61ddae93</originalsourceid><addsrcrecordid>eNp9kclKA0EQhgdRMMQcfIMGTwqJvU6mjxJcAgEvBo9N9RYmttNj90TI2ztZUEGwLlVUffy1FcUlwROCS3YrJhgLRkV1UgwoEdWYUVqe_orPi1HOa9wblwRXfFC8LrND0SNdR-tWCSzo4JCJIcTaZgSNRQaSjg3SAcwbaqCJPmx2NR8TyjFAQq5xabVF0LahNtDVsckXxZmHkN3o6IfF8uH-ZfY0Xjw_zmd3i7HhtOrGjHkiptxUckqBlARb3S9CpcMSmKys5pYJaXQJRlu2q1smNZ1CSawFJ9mwmB90bYS1alP9DmmrItRqn4hppSB1tQlOYUv8tMQGpPa89ERzyitNqMOg-zlor3V10GpT_Ni43Kl13KSmH19RQQURlAvRU9cHyqSYc3L-uyvBavcGJdTxDT17c2Czqbv9Yb7hz5h-QNVa_x_8V_kLMTWVFQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525152455</pqid></control><display><type>article</type><title>Use of biodegradable colloids and carbon black nanofluids for solar energy applications</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kosinska, A. ; Balakin, B. V. ; Kosinski, P.</creator><creatorcontrib>Kosinska, A. ; Balakin, B. V. ; Kosinski, P.</creatorcontrib><description>The conversion of solar energy to heat can be performed in direct absorption solar collectors, where the radiation from the sun is absorbed by a fluid. There are various types of fluids that can be used, and recently, nanofluids (i.e., liquids with immersed nanoparticles) have been investigated by researchers. Nevertheless, nanofluids have inherent drawbacks such as cost, toxicity, and clogging. This paper considers the use of fluids that are inexpensive and neutral to the environment, namely, coffee colloids. These types of fluids have already been tested for solar energy applications, but they have not yet been compared with nanofluids. In this research, we conducted a series of simple experiments where both coffee colloids and carbon black nanofluids were analyzed under the same conditions. According to our results, the thermal efficiency of coffee colloid and the nanofluid systems is, respectively, 12% and 16% greater than that of pure water. In addition to the experiments, we developed a mathematical model that is based on the Beer–Lambert law and a heat balance equation. Despite its simplicity, the model predicts the results relatively well.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0053258</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Biodegradability ; Bouguer law ; Carbon ; Carbon black ; Coffee ; Colloids ; Computational fluid dynamics ; Heat balance ; Mathematical models ; Nanofluids ; Nanoparticles ; Solar collectors ; Solar energy ; Solar energy conversion ; Thermodynamic efficiency ; Toxicity</subject><ispartof>AIP advances, 2021-05, Vol.11 (5), p.055214-055214-8</ispartof><rights>Author(s)</rights><rights>2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-33f1574c8972a1610db06329e09a398db4d359cb6acbd3610dd39b27a61ddae93</citedby><cites>FETCH-LOGICAL-c428t-33f1574c8972a1610db06329e09a398db4d359cb6acbd3610dd39b27a61ddae93</cites><orcidid>0000-0002-5452-7532 ; 0000-0003-0560-6098 ; 0000-0001-8842-6556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2095,27903,27904</link.rule.ids></links><search><creatorcontrib>Kosinska, A.</creatorcontrib><creatorcontrib>Balakin, B. V.</creatorcontrib><creatorcontrib>Kosinski, P.</creatorcontrib><title>Use of biodegradable colloids and carbon black nanofluids for solar energy applications</title><title>AIP advances</title><description>The conversion of solar energy to heat can be performed in direct absorption solar collectors, where the radiation from the sun is absorbed by a fluid. There are various types of fluids that can be used, and recently, nanofluids (i.e., liquids with immersed nanoparticles) have been investigated by researchers. Nevertheless, nanofluids have inherent drawbacks such as cost, toxicity, and clogging. This paper considers the use of fluids that are inexpensive and neutral to the environment, namely, coffee colloids. These types of fluids have already been tested for solar energy applications, but they have not yet been compared with nanofluids. In this research, we conducted a series of simple experiments where both coffee colloids and carbon black nanofluids were analyzed under the same conditions. According to our results, the thermal efficiency of coffee colloid and the nanofluid systems is, respectively, 12% and 16% greater than that of pure water. In addition to the experiments, we developed a mathematical model that is based on the Beer–Lambert law and a heat balance equation. Despite its simplicity, the model predicts the results relatively well.</description><subject>Biodegradability</subject><subject>Bouguer law</subject><subject>Carbon</subject><subject>Carbon black</subject><subject>Coffee</subject><subject>Colloids</subject><subject>Computational fluid dynamics</subject><subject>Heat balance</subject><subject>Mathematical models</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Solar collectors</subject><subject>Solar energy</subject><subject>Solar energy conversion</subject><subject>Thermodynamic efficiency</subject><subject>Toxicity</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kclKA0EQhgdRMMQcfIMGTwqJvU6mjxJcAgEvBo9N9RYmttNj90TI2ztZUEGwLlVUffy1FcUlwROCS3YrJhgLRkV1UgwoEdWYUVqe_orPi1HOa9wblwRXfFC8LrND0SNdR-tWCSzo4JCJIcTaZgSNRQaSjg3SAcwbaqCJPmx2NR8TyjFAQq5xabVF0LahNtDVsckXxZmHkN3o6IfF8uH-ZfY0Xjw_zmd3i7HhtOrGjHkiptxUckqBlARb3S9CpcMSmKys5pYJaXQJRlu2q1smNZ1CSawFJ9mwmB90bYS1alP9DmmrItRqn4hppSB1tQlOYUv8tMQGpPa89ERzyitNqMOg-zlor3V10GpT_Ni43Kl13KSmH19RQQURlAvRU9cHyqSYc3L-uyvBavcGJdTxDT17c2Czqbv9Yb7hz5h-QNVa_x_8V_kLMTWVFQ</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Kosinska, A.</creator><creator>Balakin, B. V.</creator><creator>Kosinski, P.</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5452-7532</orcidid><orcidid>https://orcid.org/0000-0003-0560-6098</orcidid><orcidid>https://orcid.org/0000-0001-8842-6556</orcidid></search><sort><creationdate>20210501</creationdate><title>Use of biodegradable colloids and carbon black nanofluids for solar energy applications</title><author>Kosinska, A. ; Balakin, B. V. ; Kosinski, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-33f1574c8972a1610db06329e09a398db4d359cb6acbd3610dd39b27a61ddae93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biodegradability</topic><topic>Bouguer law</topic><topic>Carbon</topic><topic>Carbon black</topic><topic>Coffee</topic><topic>Colloids</topic><topic>Computational fluid dynamics</topic><topic>Heat balance</topic><topic>Mathematical models</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Solar collectors</topic><topic>Solar energy</topic><topic>Solar energy conversion</topic><topic>Thermodynamic efficiency</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kosinska, A.</creatorcontrib><creatorcontrib>Balakin, B. V.</creatorcontrib><creatorcontrib>Kosinski, P.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kosinska, A.</au><au>Balakin, B. V.</au><au>Kosinski, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of biodegradable colloids and carbon black nanofluids for solar energy applications</atitle><jtitle>AIP advances</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>11</volume><issue>5</issue><spage>055214</spage><epage>055214-8</epage><pages>055214-055214-8</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>The conversion of solar energy to heat can be performed in direct absorption solar collectors, where the radiation from the sun is absorbed by a fluid. There are various types of fluids that can be used, and recently, nanofluids (i.e., liquids with immersed nanoparticles) have been investigated by researchers. Nevertheless, nanofluids have inherent drawbacks such as cost, toxicity, and clogging. This paper considers the use of fluids that are inexpensive and neutral to the environment, namely, coffee colloids. These types of fluids have already been tested for solar energy applications, but they have not yet been compared with nanofluids. In this research, we conducted a series of simple experiments where both coffee colloids and carbon black nanofluids were analyzed under the same conditions. According to our results, the thermal efficiency of coffee colloid and the nanofluid systems is, respectively, 12% and 16% greater than that of pure water. In addition to the experiments, we developed a mathematical model that is based on the Beer–Lambert law and a heat balance equation. Despite its simplicity, the model predicts the results relatively well.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0053258</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5452-7532</orcidid><orcidid>https://orcid.org/0000-0003-0560-6098</orcidid><orcidid>https://orcid.org/0000-0001-8842-6556</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3226 |
ispartof | AIP advances, 2021-05, Vol.11 (5), p.055214-055214-8 |
issn | 2158-3226 2158-3226 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0053258 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Biodegradability Bouguer law Carbon Carbon black Coffee Colloids Computational fluid dynamics Heat balance Mathematical models Nanofluids Nanoparticles Solar collectors Solar energy Solar energy conversion Thermodynamic efficiency Toxicity |
title | Use of biodegradable colloids and carbon black nanofluids for solar energy applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20biodegradable%20colloids%20and%20carbon%20black%20nanofluids%20for%20solar%20energy%20applications&rft.jtitle=AIP%20advances&rft.au=Kosinska,%20A.&rft.date=2021-05-01&rft.volume=11&rft.issue=5&rft.spage=055214&rft.epage=055214-8&rft.pages=055214-055214-8&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0053258&rft_dat=%3Cproquest_scita%3E2525152455%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2525152455&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_0d1f760ca9bf46f1b4248b12e0ab33f2&rfr_iscdi=true |