Printability regimes of pure metals using contactless magnetohydrodynamic drop-on-demand actuation
We demonstrate a computational study used to evaluate drop-on-demand printability of liquid metals via a contactless magnetohydrodynamic (MHD) pumping method. We show that the ejection regimes of pure liquid metal droplets can be categorized using two dimensionless quantities: We and a new dimension...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2021-05, Vol.33 (5) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 33 |
creator | Sukhotskiy, Viktor Tawil, Kareem Einarsson, Erik |
description | We demonstrate a computational study used to evaluate drop-on-demand printability of liquid metals via a contactless magnetohydrodynamic (MHD) pumping method. We show that the ejection regimes of pure liquid metal droplets can be categorized using two dimensionless quantities: We and a new dimensionless quantity
S
=
H
a
2
C
a. By plotting We vs S, a linear relationship emerges which relates the velocity through the ejection orifice to the applied magnetic flux density. Additionally, satellite-free droplet generation is shown to be bounded by the ranges
1000
≲
S
≲
2000 and
10
≲We≲
20. These ranges, coupled with the linear We vs S relationship, allow one to predict the critical magnetic flux necessary to eject a satellite-free liquid metal droplet for any liquid metal with a very low viscosity to surface tension ratio (
O
h
<
0.005). We discuss the physics underlying the MHD ejection process and relate the pump action to the dimensionless quantities. We use an MHD finite element model to parametrically sweep through applied magnetic fields and explore two-phase ejection of Al, Cu, Fe, Li, Sn, Ti, Zn, and Zr droplets from a 200 μm orifice. The model is validated using experimental high speed video ejection of Zn and Al, and the reported relationship between We and S can be used to connect the input flux density to the resulting ejection regime. |
doi_str_mv | 10.1063/5.0050354 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0050354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2521761128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-75b9a49e564d0557212175d7a1bd17d05c55b8cfe44e6fdedb1a24414b7bb8743</originalsourceid><addsrcrecordid>eNqd0EtLAzEQB_AgCtbqwW8Q8KSwmuzmsXuU4gsKetBzyGtrSjdZk6zQb29qC949zTD8-A8zAFxidIsRa-7oLUIUNZQcgRlGbVdxxtjxrueoYqzBp-AspTVCqOlqNgPqLTqfpXIbl7cw2pUbbIKhh-MULRxslpsEp-T8CupQoM4bmxIc5MrbHD63Jgaz9XJwGpZ2rIKvjB2kN7DQSWYX_Dk46UuKvTjUOfh4fHhfPFfL16eXxf2y0qRuc8Wp6iTpLGXEIEp5jWvMqeESK4N5GWlKVat7S4hlvbFGYVkTgoniSrWcNHNwtc8dY_iabMpiHaboy0pR05LFMK7boq73SseQUrS9GKMbZNwKjMTuhYKKwwuLvdnbpF3-veV_-DvEPyhG0zc_PESA3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521761128</pqid></control><display><type>article</type><title>Printability regimes of pure metals using contactless magnetohydrodynamic drop-on-demand actuation</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Sukhotskiy, Viktor ; Tawil, Kareem ; Einarsson, Erik</creator><creatorcontrib>Sukhotskiy, Viktor ; Tawil, Kareem ; Einarsson, Erik</creatorcontrib><description>We demonstrate a computational study used to evaluate drop-on-demand printability of liquid metals via a contactless magnetohydrodynamic (MHD) pumping method. We show that the ejection regimes of pure liquid metal droplets can be categorized using two dimensionless quantities: We and a new dimensionless quantity
S
=
H
a
2
C
a. By plotting We vs S, a linear relationship emerges which relates the velocity through the ejection orifice to the applied magnetic flux density. Additionally, satellite-free droplet generation is shown to be bounded by the ranges
1000
≲
S
≲
2000 and
10
≲We≲
20. These ranges, coupled with the linear We vs S relationship, allow one to predict the critical magnetic flux necessary to eject a satellite-free liquid metal droplet for any liquid metal with a very low viscosity to surface tension ratio (
O
h
<
0.005). We discuss the physics underlying the MHD ejection process and relate the pump action to the dimensionless quantities. We use an MHD finite element model to parametrically sweep through applied magnetic fields and explore two-phase ejection of Al, Cu, Fe, Li, Sn, Ti, Zn, and Zr droplets from a 200 μm orifice. The model is validated using experimental high speed video ejection of Zn and Al, and the reported relationship between We and S can be used to connect the input flux density to the resulting ejection regime.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0050354</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Actuation ; Aluminum ; Computational fluid dynamics ; Copper ; Droplets ; Ejection ; Finite element method ; Fluid dynamics ; Fluid flow ; Flux density ; Iron ; Liquid metals ; Magnetic flux ; Magnetism ; Magnetohydrodynamics ; Mathematical models ; Orifices ; Physics ; Surface tension ; Titanium ; Zirconium</subject><ispartof>Physics of fluids (1994), 2021-05, Vol.33 (5)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-75b9a49e564d0557212175d7a1bd17d05c55b8cfe44e6fdedb1a24414b7bb8743</citedby><cites>FETCH-LOGICAL-c428t-75b9a49e564d0557212175d7a1bd17d05c55b8cfe44e6fdedb1a24414b7bb8743</cites><orcidid>0000-0002-3896-2673 ; 0000-0002-1831-2550</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Sukhotskiy, Viktor</creatorcontrib><creatorcontrib>Tawil, Kareem</creatorcontrib><creatorcontrib>Einarsson, Erik</creatorcontrib><title>Printability regimes of pure metals using contactless magnetohydrodynamic drop-on-demand actuation</title><title>Physics of fluids (1994)</title><description>We demonstrate a computational study used to evaluate drop-on-demand printability of liquid metals via a contactless magnetohydrodynamic (MHD) pumping method. We show that the ejection regimes of pure liquid metal droplets can be categorized using two dimensionless quantities: We and a new dimensionless quantity
S
=
H
a
2
C
a. By plotting We vs S, a linear relationship emerges which relates the velocity through the ejection orifice to the applied magnetic flux density. Additionally, satellite-free droplet generation is shown to be bounded by the ranges
1000
≲
S
≲
2000 and
10
≲We≲
20. These ranges, coupled with the linear We vs S relationship, allow one to predict the critical magnetic flux necessary to eject a satellite-free liquid metal droplet for any liquid metal with a very low viscosity to surface tension ratio (
O
h
<
0.005). We discuss the physics underlying the MHD ejection process and relate the pump action to the dimensionless quantities. We use an MHD finite element model to parametrically sweep through applied magnetic fields and explore two-phase ejection of Al, Cu, Fe, Li, Sn, Ti, Zn, and Zr droplets from a 200 μm orifice. The model is validated using experimental high speed video ejection of Zn and Al, and the reported relationship between We and S can be used to connect the input flux density to the resulting ejection regime.</description><subject>Actuation</subject><subject>Aluminum</subject><subject>Computational fluid dynamics</subject><subject>Copper</subject><subject>Droplets</subject><subject>Ejection</subject><subject>Finite element method</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Flux density</subject><subject>Iron</subject><subject>Liquid metals</subject><subject>Magnetic flux</subject><subject>Magnetism</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical models</subject><subject>Orifices</subject><subject>Physics</subject><subject>Surface tension</subject><subject>Titanium</subject><subject>Zirconium</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0EtLAzEQB_AgCtbqwW8Q8KSwmuzmsXuU4gsKetBzyGtrSjdZk6zQb29qC949zTD8-A8zAFxidIsRa-7oLUIUNZQcgRlGbVdxxtjxrueoYqzBp-AspTVCqOlqNgPqLTqfpXIbl7cw2pUbbIKhh-MULRxslpsEp-T8CupQoM4bmxIc5MrbHD63Jgaz9XJwGpZ2rIKvjB2kN7DQSWYX_Dk46UuKvTjUOfh4fHhfPFfL16eXxf2y0qRuc8Wp6iTpLGXEIEp5jWvMqeESK4N5GWlKVat7S4hlvbFGYVkTgoniSrWcNHNwtc8dY_iabMpiHaboy0pR05LFMK7boq73SseQUrS9GKMbZNwKjMTuhYKKwwuLvdnbpF3-veV_-DvEPyhG0zc_PESA3A</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Sukhotskiy, Viktor</creator><creator>Tawil, Kareem</creator><creator>Einarsson, Erik</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3896-2673</orcidid><orcidid>https://orcid.org/0000-0002-1831-2550</orcidid></search><sort><creationdate>202105</creationdate><title>Printability regimes of pure metals using contactless magnetohydrodynamic drop-on-demand actuation</title><author>Sukhotskiy, Viktor ; Tawil, Kareem ; Einarsson, Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-75b9a49e564d0557212175d7a1bd17d05c55b8cfe44e6fdedb1a24414b7bb8743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuation</topic><topic>Aluminum</topic><topic>Computational fluid dynamics</topic><topic>Copper</topic><topic>Droplets</topic><topic>Ejection</topic><topic>Finite element method</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Flux density</topic><topic>Iron</topic><topic>Liquid metals</topic><topic>Magnetic flux</topic><topic>Magnetism</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical models</topic><topic>Orifices</topic><topic>Physics</topic><topic>Surface tension</topic><topic>Titanium</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sukhotskiy, Viktor</creatorcontrib><creatorcontrib>Tawil, Kareem</creatorcontrib><creatorcontrib>Einarsson, Erik</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sukhotskiy, Viktor</au><au>Tawil, Kareem</au><au>Einarsson, Erik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Printability regimes of pure metals using contactless magnetohydrodynamic drop-on-demand actuation</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2021-05</date><risdate>2021</risdate><volume>33</volume><issue>5</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>We demonstrate a computational study used to evaluate drop-on-demand printability of liquid metals via a contactless magnetohydrodynamic (MHD) pumping method. We show that the ejection regimes of pure liquid metal droplets can be categorized using two dimensionless quantities: We and a new dimensionless quantity
S
=
H
a
2
C
a. By plotting We vs S, a linear relationship emerges which relates the velocity through the ejection orifice to the applied magnetic flux density. Additionally, satellite-free droplet generation is shown to be bounded by the ranges
1000
≲
S
≲
2000 and
10
≲We≲
20. These ranges, coupled with the linear We vs S relationship, allow one to predict the critical magnetic flux necessary to eject a satellite-free liquid metal droplet for any liquid metal with a very low viscosity to surface tension ratio (
O
h
<
0.005). We discuss the physics underlying the MHD ejection process and relate the pump action to the dimensionless quantities. We use an MHD finite element model to parametrically sweep through applied magnetic fields and explore two-phase ejection of Al, Cu, Fe, Li, Sn, Ti, Zn, and Zr droplets from a 200 μm orifice. The model is validated using experimental high speed video ejection of Zn and Al, and the reported relationship between We and S can be used to connect the input flux density to the resulting ejection regime.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0050354</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3896-2673</orcidid><orcidid>https://orcid.org/0000-0002-1831-2550</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2021-05, Vol.33 (5) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0050354 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Actuation Aluminum Computational fluid dynamics Copper Droplets Ejection Finite element method Fluid dynamics Fluid flow Flux density Iron Liquid metals Magnetic flux Magnetism Magnetohydrodynamics Mathematical models Orifices Physics Surface tension Titanium Zirconium |
title | Printability regimes of pure metals using contactless magnetohydrodynamic drop-on-demand actuation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A30%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Printability%20regimes%20of%20pure%20metals%20using%20contactless%20magnetohydrodynamic%20drop-on-demand%20actuation&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Sukhotskiy,%20Viktor&rft.date=2021-05&rft.volume=33&rft.issue=5&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0050354&rft_dat=%3Cproquest_scita%3E2521761128%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2521761128&rft_id=info:pmid/&rfr_iscdi=true |