Thermal conductivity measurements of sub-surface buried substrates by steady-state thermoreflectance
Measuring the thermal conductivity of sub-surface buried substrates is of significant practical interests. However, this remains challenging with traditional pump–probe spectroscopies due to their limited thermal penetration depths. Here, we experimentally and numerically investigate the TPD of the...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2021-06, Vol.92 (6), p.064906-064906 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 064906 |
---|---|
container_issue | 6 |
container_start_page | 064906 |
container_title | Review of scientific instruments |
container_volume | 92 |
creator | Hoque, Md Shafkat Bin Koh, Yee Rui Aryana, Kiumars Hoglund, Eric R. Braun, Jeffrey L. Olson, David H. Gaskins, John T. Ahmad, Habib Elahi, Mirza Mohammad Mahbube Hite, Jennifer K. Leseman, Zayd C. Doolittle, W. Alan Hopkins, Patrick E. |
description | Measuring the thermal conductivity of sub-surface buried substrates is of significant practical interests. However, this remains challenging with traditional pump–probe spectroscopies due to their limited thermal penetration depths. Here, we experimentally and numerically investigate the TPD of the recently developed optical pump–probe technique steady-state thermoreflectance (SSTR) and explore its capability for measuring the thermal properties of buried substrates. The conventional definition of the TPD (i.e., the depth at which temperature drops to 1/e value of the maximum surface temperature) does not truly represent the upper limit of how far beneath the surface SSTR can probe. For estimating the uncertainty of SSTR measurements of a buried substrate a priori, sensitivity calculations provide the best means. Thus, detailed sensitivity calculations are provided to guide future measurements. Due to the steady-state nature of SSTR, it can measure the thermal conductivity of buried substrates that are traditionally challenging by transient pump–probe techniques, exemplified by measuring three control samples. We also discuss the required criteria for SSTR to isolate the thermal properties of a buried film. Our study establishes SSTR as a suitable technique for thermal characterizations of sub-surface buried substrates in typical device geometries. |
doi_str_mv | 10.1063/5.0049531 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0049531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2546332253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-b275c167c1a2d53cda6584538045cc4079502e946a9462bbca3a2a5617117dd3</originalsourceid><addsrcrecordid>eNqd0E1LwzAYB_AgCs7pwW8Q8KJCZ96zHmX4BgMvu5c0eYodbTOTdNBvb8YGgkcDIfDnl4fkj9AtJQtKFH-SC0JEKTk9QzNKlmWhFePnaEYIF4XSYnmJrmLckrwkpTPkNl8QetNh6wc32tTu2zThHkwcA_QwpIh9g-NYFzlojAVcj6EFd4hiCiZBxPWEYwLjpiKmHOB0GOkDNB3YZAYL1-iiMV2Em9M5R5vXl83qvVh_vn2snteF5aVMRc20tFRpSw1zkltnlFwKyZdESGsF0aUkDEqhTN6srq3hhhmpqKZUO8fn6P44dhf89wgxVX0bLXSdGcCPsWIy31daUpHp3R-69WMY8uOyEopzxiTP6uGobPAx5g9Vu9D2JkwVJdWh7kpWp7qzfTzaaNvcQuuH_-G9D7-w2rmG_wDFL46K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546332253</pqid></control><display><type>article</type><title>Thermal conductivity measurements of sub-surface buried substrates by steady-state thermoreflectance</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Hoque, Md Shafkat Bin ; Koh, Yee Rui ; Aryana, Kiumars ; Hoglund, Eric R. ; Braun, Jeffrey L. ; Olson, David H. ; Gaskins, John T. ; Ahmad, Habib ; Elahi, Mirza Mohammad Mahbube ; Hite, Jennifer K. ; Leseman, Zayd C. ; Doolittle, W. Alan ; Hopkins, Patrick E.</creator><creatorcontrib>Hoque, Md Shafkat Bin ; Koh, Yee Rui ; Aryana, Kiumars ; Hoglund, Eric R. ; Braun, Jeffrey L. ; Olson, David H. ; Gaskins, John T. ; Ahmad, Habib ; Elahi, Mirza Mohammad Mahbube ; Hite, Jennifer K. ; Leseman, Zayd C. ; Doolittle, W. Alan ; Hopkins, Patrick E.</creatorcontrib><description>Measuring the thermal conductivity of sub-surface buried substrates is of significant practical interests. However, this remains challenging with traditional pump–probe spectroscopies due to their limited thermal penetration depths. Here, we experimentally and numerically investigate the TPD of the recently developed optical pump–probe technique steady-state thermoreflectance (SSTR) and explore its capability for measuring the thermal properties of buried substrates. The conventional definition of the TPD (i.e., the depth at which temperature drops to 1/e value of the maximum surface temperature) does not truly represent the upper limit of how far beneath the surface SSTR can probe. For estimating the uncertainty of SSTR measurements of a buried substrate a priori, sensitivity calculations provide the best means. Thus, detailed sensitivity calculations are provided to guide future measurements. Due to the steady-state nature of SSTR, it can measure the thermal conductivity of buried substrates that are traditionally challenging by transient pump–probe techniques, exemplified by measuring three control samples. We also discuss the required criteria for SSTR to isolate the thermal properties of a buried film. Our study establishes SSTR as a suitable technique for thermal characterizations of sub-surface buried substrates in typical device geometries.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/5.0049531</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Heat conductivity ; Heat transfer ; Mathematical analysis ; Scientific apparatus & instruments ; Sensitivity ; Steady state ; Substrates ; Thermal conductivity ; Thermodynamic properties</subject><ispartof>Review of scientific instruments, 2021-06, Vol.92 (6), p.064906-064906</ispartof><rights>Author(s)</rights><rights>2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-b275c167c1a2d53cda6584538045cc4079502e946a9462bbca3a2a5617117dd3</citedby><cites>FETCH-LOGICAL-c395t-b275c167c1a2d53cda6584538045cc4079502e946a9462bbca3a2a5617117dd3</cites><orcidid>0000-0001-7853-9282 ; 0000-0001-9576-9768 ; 0000-0002-9846-7164 ; 0000-0003-4289-7736 ; 0000-0002-3681-7245 ; 0000-0001-6427-5327 ; 0000-0002-3409-4960 ; 0000-0001-8622-5902 ; 0000-0002-3403-743X ; 0000-0002-7697-8115 ; 0000-0002-4090-0826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/5.0049531$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Hoque, Md Shafkat Bin</creatorcontrib><creatorcontrib>Koh, Yee Rui</creatorcontrib><creatorcontrib>Aryana, Kiumars</creatorcontrib><creatorcontrib>Hoglund, Eric R.</creatorcontrib><creatorcontrib>Braun, Jeffrey L.</creatorcontrib><creatorcontrib>Olson, David H.</creatorcontrib><creatorcontrib>Gaskins, John T.</creatorcontrib><creatorcontrib>Ahmad, Habib</creatorcontrib><creatorcontrib>Elahi, Mirza Mohammad Mahbube</creatorcontrib><creatorcontrib>Hite, Jennifer K.</creatorcontrib><creatorcontrib>Leseman, Zayd C.</creatorcontrib><creatorcontrib>Doolittle, W. Alan</creatorcontrib><creatorcontrib>Hopkins, Patrick E.</creatorcontrib><title>Thermal conductivity measurements of sub-surface buried substrates by steady-state thermoreflectance</title><title>Review of scientific instruments</title><description>Measuring the thermal conductivity of sub-surface buried substrates is of significant practical interests. However, this remains challenging with traditional pump–probe spectroscopies due to their limited thermal penetration depths. Here, we experimentally and numerically investigate the TPD of the recently developed optical pump–probe technique steady-state thermoreflectance (SSTR) and explore its capability for measuring the thermal properties of buried substrates. The conventional definition of the TPD (i.e., the depth at which temperature drops to 1/e value of the maximum surface temperature) does not truly represent the upper limit of how far beneath the surface SSTR can probe. For estimating the uncertainty of SSTR measurements of a buried substrate a priori, sensitivity calculations provide the best means. Thus, detailed sensitivity calculations are provided to guide future measurements. Due to the steady-state nature of SSTR, it can measure the thermal conductivity of buried substrates that are traditionally challenging by transient pump–probe techniques, exemplified by measuring three control samples. We also discuss the required criteria for SSTR to isolate the thermal properties of a buried film. Our study establishes SSTR as a suitable technique for thermal characterizations of sub-surface buried substrates in typical device geometries.</description><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Mathematical analysis</subject><subject>Scientific apparatus & instruments</subject><subject>Sensitivity</subject><subject>Steady state</subject><subject>Substrates</subject><subject>Thermal conductivity</subject><subject>Thermodynamic properties</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LwzAYB_AgCs7pwW8Q8KJCZ96zHmX4BgMvu5c0eYodbTOTdNBvb8YGgkcDIfDnl4fkj9AtJQtKFH-SC0JEKTk9QzNKlmWhFePnaEYIF4XSYnmJrmLckrwkpTPkNl8QetNh6wc32tTu2zThHkwcA_QwpIh9g-NYFzlojAVcj6EFd4hiCiZBxPWEYwLjpiKmHOB0GOkDNB3YZAYL1-iiMV2Em9M5R5vXl83qvVh_vn2snteF5aVMRc20tFRpSw1zkltnlFwKyZdESGsF0aUkDEqhTN6srq3hhhmpqKZUO8fn6P44dhf89wgxVX0bLXSdGcCPsWIy31daUpHp3R-69WMY8uOyEopzxiTP6uGobPAx5g9Vu9D2JkwVJdWh7kpWp7qzfTzaaNvcQuuH_-G9D7-w2rmG_wDFL46K</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Hoque, Md Shafkat Bin</creator><creator>Koh, Yee Rui</creator><creator>Aryana, Kiumars</creator><creator>Hoglund, Eric R.</creator><creator>Braun, Jeffrey L.</creator><creator>Olson, David H.</creator><creator>Gaskins, John T.</creator><creator>Ahmad, Habib</creator><creator>Elahi, Mirza Mohammad Mahbube</creator><creator>Hite, Jennifer K.</creator><creator>Leseman, Zayd C.</creator><creator>Doolittle, W. Alan</creator><creator>Hopkins, Patrick E.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7853-9282</orcidid><orcidid>https://orcid.org/0000-0001-9576-9768</orcidid><orcidid>https://orcid.org/0000-0002-9846-7164</orcidid><orcidid>https://orcid.org/0000-0003-4289-7736</orcidid><orcidid>https://orcid.org/0000-0002-3681-7245</orcidid><orcidid>https://orcid.org/0000-0001-6427-5327</orcidid><orcidid>https://orcid.org/0000-0002-3409-4960</orcidid><orcidid>https://orcid.org/0000-0001-8622-5902</orcidid><orcidid>https://orcid.org/0000-0002-3403-743X</orcidid><orcidid>https://orcid.org/0000-0002-7697-8115</orcidid><orcidid>https://orcid.org/0000-0002-4090-0826</orcidid></search><sort><creationdate>20210601</creationdate><title>Thermal conductivity measurements of sub-surface buried substrates by steady-state thermoreflectance</title><author>Hoque, Md Shafkat Bin ; Koh, Yee Rui ; Aryana, Kiumars ; Hoglund, Eric R. ; Braun, Jeffrey L. ; Olson, David H. ; Gaskins, John T. ; Ahmad, Habib ; Elahi, Mirza Mohammad Mahbube ; Hite, Jennifer K. ; Leseman, Zayd C. ; Doolittle, W. Alan ; Hopkins, Patrick E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-b275c167c1a2d53cda6584538045cc4079502e946a9462bbca3a2a5617117dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Mathematical analysis</topic><topic>Scientific apparatus & instruments</topic><topic>Sensitivity</topic><topic>Steady state</topic><topic>Substrates</topic><topic>Thermal conductivity</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoque, Md Shafkat Bin</creatorcontrib><creatorcontrib>Koh, Yee Rui</creatorcontrib><creatorcontrib>Aryana, Kiumars</creatorcontrib><creatorcontrib>Hoglund, Eric R.</creatorcontrib><creatorcontrib>Braun, Jeffrey L.</creatorcontrib><creatorcontrib>Olson, David H.</creatorcontrib><creatorcontrib>Gaskins, John T.</creatorcontrib><creatorcontrib>Ahmad, Habib</creatorcontrib><creatorcontrib>Elahi, Mirza Mohammad Mahbube</creatorcontrib><creatorcontrib>Hite, Jennifer K.</creatorcontrib><creatorcontrib>Leseman, Zayd C.</creatorcontrib><creatorcontrib>Doolittle, W. Alan</creatorcontrib><creatorcontrib>Hopkins, Patrick E.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoque, Md Shafkat Bin</au><au>Koh, Yee Rui</au><au>Aryana, Kiumars</au><au>Hoglund, Eric R.</au><au>Braun, Jeffrey L.</au><au>Olson, David H.</au><au>Gaskins, John T.</au><au>Ahmad, Habib</au><au>Elahi, Mirza Mohammad Mahbube</au><au>Hite, Jennifer K.</au><au>Leseman, Zayd C.</au><au>Doolittle, W. Alan</au><au>Hopkins, Patrick E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal conductivity measurements of sub-surface buried substrates by steady-state thermoreflectance</atitle><jtitle>Review of scientific instruments</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>92</volume><issue>6</issue><spage>064906</spage><epage>064906</epage><pages>064906-064906</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>Measuring the thermal conductivity of sub-surface buried substrates is of significant practical interests. However, this remains challenging with traditional pump–probe spectroscopies due to their limited thermal penetration depths. Here, we experimentally and numerically investigate the TPD of the recently developed optical pump–probe technique steady-state thermoreflectance (SSTR) and explore its capability for measuring the thermal properties of buried substrates. The conventional definition of the TPD (i.e., the depth at which temperature drops to 1/e value of the maximum surface temperature) does not truly represent the upper limit of how far beneath the surface SSTR can probe. For estimating the uncertainty of SSTR measurements of a buried substrate a priori, sensitivity calculations provide the best means. Thus, detailed sensitivity calculations are provided to guide future measurements. Due to the steady-state nature of SSTR, it can measure the thermal conductivity of buried substrates that are traditionally challenging by transient pump–probe techniques, exemplified by measuring three control samples. We also discuss the required criteria for SSTR to isolate the thermal properties of a buried film. Our study establishes SSTR as a suitable technique for thermal characterizations of sub-surface buried substrates in typical device geometries.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0049531</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7853-9282</orcidid><orcidid>https://orcid.org/0000-0001-9576-9768</orcidid><orcidid>https://orcid.org/0000-0002-9846-7164</orcidid><orcidid>https://orcid.org/0000-0003-4289-7736</orcidid><orcidid>https://orcid.org/0000-0002-3681-7245</orcidid><orcidid>https://orcid.org/0000-0001-6427-5327</orcidid><orcidid>https://orcid.org/0000-0002-3409-4960</orcidid><orcidid>https://orcid.org/0000-0001-8622-5902</orcidid><orcidid>https://orcid.org/0000-0002-3403-743X</orcidid><orcidid>https://orcid.org/0000-0002-7697-8115</orcidid><orcidid>https://orcid.org/0000-0002-4090-0826</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2021-06, Vol.92 (6), p.064906-064906 |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0049531 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Heat conductivity Heat transfer Mathematical analysis Scientific apparatus & instruments Sensitivity Steady state Substrates Thermal conductivity Thermodynamic properties |
title | Thermal conductivity measurements of sub-surface buried substrates by steady-state thermoreflectance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A01%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20conductivity%20measurements%20of%20sub-surface%20buried%20substrates%20by%20steady-state%20thermoreflectance&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Hoque,%20Md%20Shafkat%20Bin&rft.date=2021-06-01&rft.volume=92&rft.issue=6&rft.spage=064906&rft.epage=064906&rft.pages=064906-064906&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/5.0049531&rft_dat=%3Cproquest_scita%3E2546332253%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546332253&rft_id=info:pmid/&rfr_iscdi=true |