Thermal conductivity measurements of sub-surface buried substrates by steady-state thermoreflectance

Measuring the thermal conductivity of sub-surface buried substrates is of significant practical interests. However, this remains challenging with traditional pump–probe spectroscopies due to their limited thermal penetration depths. Here, we experimentally and numerically investigate the TPD of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2021-06, Vol.92 (6), p.064906-064906
Hauptverfasser: Hoque, Md Shafkat Bin, Koh, Yee Rui, Aryana, Kiumars, Hoglund, Eric R., Braun, Jeffrey L., Olson, David H., Gaskins, John T., Ahmad, Habib, Elahi, Mirza Mohammad Mahbube, Hite, Jennifer K., Leseman, Zayd C., Doolittle, W. Alan, Hopkins, Patrick E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 064906
container_issue 6
container_start_page 064906
container_title Review of scientific instruments
container_volume 92
creator Hoque, Md Shafkat Bin
Koh, Yee Rui
Aryana, Kiumars
Hoglund, Eric R.
Braun, Jeffrey L.
Olson, David H.
Gaskins, John T.
Ahmad, Habib
Elahi, Mirza Mohammad Mahbube
Hite, Jennifer K.
Leseman, Zayd C.
Doolittle, W. Alan
Hopkins, Patrick E.
description Measuring the thermal conductivity of sub-surface buried substrates is of significant practical interests. However, this remains challenging with traditional pump–probe spectroscopies due to their limited thermal penetration depths. Here, we experimentally and numerically investigate the TPD of the recently developed optical pump–probe technique steady-state thermoreflectance (SSTR) and explore its capability for measuring the thermal properties of buried substrates. The conventional definition of the TPD (i.e., the depth at which temperature drops to 1/e value of the maximum surface temperature) does not truly represent the upper limit of how far beneath the surface SSTR can probe. For estimating the uncertainty of SSTR measurements of a buried substrate a priori, sensitivity calculations provide the best means. Thus, detailed sensitivity calculations are provided to guide future measurements. Due to the steady-state nature of SSTR, it can measure the thermal conductivity of buried substrates that are traditionally challenging by transient pump–probe techniques, exemplified by measuring three control samples. We also discuss the required criteria for SSTR to isolate the thermal properties of a buried film. Our study establishes SSTR as a suitable technique for thermal characterizations of sub-surface buried substrates in typical device geometries.
doi_str_mv 10.1063/5.0049531
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0049531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2546332253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-b275c167c1a2d53cda6584538045cc4079502e946a9462bbca3a2a5617117dd3</originalsourceid><addsrcrecordid>eNqd0E1LwzAYB_AgCs7pwW8Q8KJCZ96zHmX4BgMvu5c0eYodbTOTdNBvb8YGgkcDIfDnl4fkj9AtJQtKFH-SC0JEKTk9QzNKlmWhFePnaEYIF4XSYnmJrmLckrwkpTPkNl8QetNh6wc32tTu2zThHkwcA_QwpIh9g-NYFzlojAVcj6EFd4hiCiZBxPWEYwLjpiKmHOB0GOkDNB3YZAYL1-iiMV2Em9M5R5vXl83qvVh_vn2snteF5aVMRc20tFRpSw1zkltnlFwKyZdESGsF0aUkDEqhTN6srq3hhhmpqKZUO8fn6P44dhf89wgxVX0bLXSdGcCPsWIy31daUpHp3R-69WMY8uOyEopzxiTP6uGobPAx5g9Vu9D2JkwVJdWh7kpWp7qzfTzaaNvcQuuH_-G9D7-w2rmG_wDFL46K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546332253</pqid></control><display><type>article</type><title>Thermal conductivity measurements of sub-surface buried substrates by steady-state thermoreflectance</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Hoque, Md Shafkat Bin ; Koh, Yee Rui ; Aryana, Kiumars ; Hoglund, Eric R. ; Braun, Jeffrey L. ; Olson, David H. ; Gaskins, John T. ; Ahmad, Habib ; Elahi, Mirza Mohammad Mahbube ; Hite, Jennifer K. ; Leseman, Zayd C. ; Doolittle, W. Alan ; Hopkins, Patrick E.</creator><creatorcontrib>Hoque, Md Shafkat Bin ; Koh, Yee Rui ; Aryana, Kiumars ; Hoglund, Eric R. ; Braun, Jeffrey L. ; Olson, David H. ; Gaskins, John T. ; Ahmad, Habib ; Elahi, Mirza Mohammad Mahbube ; Hite, Jennifer K. ; Leseman, Zayd C. ; Doolittle, W. Alan ; Hopkins, Patrick E.</creatorcontrib><description>Measuring the thermal conductivity of sub-surface buried substrates is of significant practical interests. However, this remains challenging with traditional pump–probe spectroscopies due to their limited thermal penetration depths. Here, we experimentally and numerically investigate the TPD of the recently developed optical pump–probe technique steady-state thermoreflectance (SSTR) and explore its capability for measuring the thermal properties of buried substrates. The conventional definition of the TPD (i.e., the depth at which temperature drops to 1/e value of the maximum surface temperature) does not truly represent the upper limit of how far beneath the surface SSTR can probe. For estimating the uncertainty of SSTR measurements of a buried substrate a priori, sensitivity calculations provide the best means. Thus, detailed sensitivity calculations are provided to guide future measurements. Due to the steady-state nature of SSTR, it can measure the thermal conductivity of buried substrates that are traditionally challenging by transient pump–probe techniques, exemplified by measuring three control samples. We also discuss the required criteria for SSTR to isolate the thermal properties of a buried film. Our study establishes SSTR as a suitable technique for thermal characterizations of sub-surface buried substrates in typical device geometries.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/5.0049531</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Heat conductivity ; Heat transfer ; Mathematical analysis ; Scientific apparatus &amp; instruments ; Sensitivity ; Steady state ; Substrates ; Thermal conductivity ; Thermodynamic properties</subject><ispartof>Review of scientific instruments, 2021-06, Vol.92 (6), p.064906-064906</ispartof><rights>Author(s)</rights><rights>2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-b275c167c1a2d53cda6584538045cc4079502e946a9462bbca3a2a5617117dd3</citedby><cites>FETCH-LOGICAL-c395t-b275c167c1a2d53cda6584538045cc4079502e946a9462bbca3a2a5617117dd3</cites><orcidid>0000-0001-7853-9282 ; 0000-0001-9576-9768 ; 0000-0002-9846-7164 ; 0000-0003-4289-7736 ; 0000-0002-3681-7245 ; 0000-0001-6427-5327 ; 0000-0002-3409-4960 ; 0000-0001-8622-5902 ; 0000-0002-3403-743X ; 0000-0002-7697-8115 ; 0000-0002-4090-0826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/5.0049531$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Hoque, Md Shafkat Bin</creatorcontrib><creatorcontrib>Koh, Yee Rui</creatorcontrib><creatorcontrib>Aryana, Kiumars</creatorcontrib><creatorcontrib>Hoglund, Eric R.</creatorcontrib><creatorcontrib>Braun, Jeffrey L.</creatorcontrib><creatorcontrib>Olson, David H.</creatorcontrib><creatorcontrib>Gaskins, John T.</creatorcontrib><creatorcontrib>Ahmad, Habib</creatorcontrib><creatorcontrib>Elahi, Mirza Mohammad Mahbube</creatorcontrib><creatorcontrib>Hite, Jennifer K.</creatorcontrib><creatorcontrib>Leseman, Zayd C.</creatorcontrib><creatorcontrib>Doolittle, W. Alan</creatorcontrib><creatorcontrib>Hopkins, Patrick E.</creatorcontrib><title>Thermal conductivity measurements of sub-surface buried substrates by steady-state thermoreflectance</title><title>Review of scientific instruments</title><description>Measuring the thermal conductivity of sub-surface buried substrates is of significant practical interests. However, this remains challenging with traditional pump–probe spectroscopies due to their limited thermal penetration depths. Here, we experimentally and numerically investigate the TPD of the recently developed optical pump–probe technique steady-state thermoreflectance (SSTR) and explore its capability for measuring the thermal properties of buried substrates. The conventional definition of the TPD (i.e., the depth at which temperature drops to 1/e value of the maximum surface temperature) does not truly represent the upper limit of how far beneath the surface SSTR can probe. For estimating the uncertainty of SSTR measurements of a buried substrate a priori, sensitivity calculations provide the best means. Thus, detailed sensitivity calculations are provided to guide future measurements. Due to the steady-state nature of SSTR, it can measure the thermal conductivity of buried substrates that are traditionally challenging by transient pump–probe techniques, exemplified by measuring three control samples. We also discuss the required criteria for SSTR to isolate the thermal properties of a buried film. Our study establishes SSTR as a suitable technique for thermal characterizations of sub-surface buried substrates in typical device geometries.</description><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Mathematical analysis</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Sensitivity</subject><subject>Steady state</subject><subject>Substrates</subject><subject>Thermal conductivity</subject><subject>Thermodynamic properties</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LwzAYB_AgCs7pwW8Q8KJCZ96zHmX4BgMvu5c0eYodbTOTdNBvb8YGgkcDIfDnl4fkj9AtJQtKFH-SC0JEKTk9QzNKlmWhFePnaEYIF4XSYnmJrmLckrwkpTPkNl8QetNh6wc32tTu2zThHkwcA_QwpIh9g-NYFzlojAVcj6EFd4hiCiZBxPWEYwLjpiKmHOB0GOkDNB3YZAYL1-iiMV2Em9M5R5vXl83qvVh_vn2snteF5aVMRc20tFRpSw1zkltnlFwKyZdESGsF0aUkDEqhTN6srq3hhhmpqKZUO8fn6P44dhf89wgxVX0bLXSdGcCPsWIy31daUpHp3R-69WMY8uOyEopzxiTP6uGobPAx5g9Vu9D2JkwVJdWh7kpWp7qzfTzaaNvcQuuH_-G9D7-w2rmG_wDFL46K</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Hoque, Md Shafkat Bin</creator><creator>Koh, Yee Rui</creator><creator>Aryana, Kiumars</creator><creator>Hoglund, Eric R.</creator><creator>Braun, Jeffrey L.</creator><creator>Olson, David H.</creator><creator>Gaskins, John T.</creator><creator>Ahmad, Habib</creator><creator>Elahi, Mirza Mohammad Mahbube</creator><creator>Hite, Jennifer K.</creator><creator>Leseman, Zayd C.</creator><creator>Doolittle, W. Alan</creator><creator>Hopkins, Patrick E.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7853-9282</orcidid><orcidid>https://orcid.org/0000-0001-9576-9768</orcidid><orcidid>https://orcid.org/0000-0002-9846-7164</orcidid><orcidid>https://orcid.org/0000-0003-4289-7736</orcidid><orcidid>https://orcid.org/0000-0002-3681-7245</orcidid><orcidid>https://orcid.org/0000-0001-6427-5327</orcidid><orcidid>https://orcid.org/0000-0002-3409-4960</orcidid><orcidid>https://orcid.org/0000-0001-8622-5902</orcidid><orcidid>https://orcid.org/0000-0002-3403-743X</orcidid><orcidid>https://orcid.org/0000-0002-7697-8115</orcidid><orcidid>https://orcid.org/0000-0002-4090-0826</orcidid></search><sort><creationdate>20210601</creationdate><title>Thermal conductivity measurements of sub-surface buried substrates by steady-state thermoreflectance</title><author>Hoque, Md Shafkat Bin ; Koh, Yee Rui ; Aryana, Kiumars ; Hoglund, Eric R. ; Braun, Jeffrey L. ; Olson, David H. ; Gaskins, John T. ; Ahmad, Habib ; Elahi, Mirza Mohammad Mahbube ; Hite, Jennifer K. ; Leseman, Zayd C. ; Doolittle, W. Alan ; Hopkins, Patrick E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-b275c167c1a2d53cda6584538045cc4079502e946a9462bbca3a2a5617117dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Mathematical analysis</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Sensitivity</topic><topic>Steady state</topic><topic>Substrates</topic><topic>Thermal conductivity</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoque, Md Shafkat Bin</creatorcontrib><creatorcontrib>Koh, Yee Rui</creatorcontrib><creatorcontrib>Aryana, Kiumars</creatorcontrib><creatorcontrib>Hoglund, Eric R.</creatorcontrib><creatorcontrib>Braun, Jeffrey L.</creatorcontrib><creatorcontrib>Olson, David H.</creatorcontrib><creatorcontrib>Gaskins, John T.</creatorcontrib><creatorcontrib>Ahmad, Habib</creatorcontrib><creatorcontrib>Elahi, Mirza Mohammad Mahbube</creatorcontrib><creatorcontrib>Hite, Jennifer K.</creatorcontrib><creatorcontrib>Leseman, Zayd C.</creatorcontrib><creatorcontrib>Doolittle, W. Alan</creatorcontrib><creatorcontrib>Hopkins, Patrick E.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoque, Md Shafkat Bin</au><au>Koh, Yee Rui</au><au>Aryana, Kiumars</au><au>Hoglund, Eric R.</au><au>Braun, Jeffrey L.</au><au>Olson, David H.</au><au>Gaskins, John T.</au><au>Ahmad, Habib</au><au>Elahi, Mirza Mohammad Mahbube</au><au>Hite, Jennifer K.</au><au>Leseman, Zayd C.</au><au>Doolittle, W. Alan</au><au>Hopkins, Patrick E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal conductivity measurements of sub-surface buried substrates by steady-state thermoreflectance</atitle><jtitle>Review of scientific instruments</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>92</volume><issue>6</issue><spage>064906</spage><epage>064906</epage><pages>064906-064906</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>Measuring the thermal conductivity of sub-surface buried substrates is of significant practical interests. However, this remains challenging with traditional pump–probe spectroscopies due to their limited thermal penetration depths. Here, we experimentally and numerically investigate the TPD of the recently developed optical pump–probe technique steady-state thermoreflectance (SSTR) and explore its capability for measuring the thermal properties of buried substrates. The conventional definition of the TPD (i.e., the depth at which temperature drops to 1/e value of the maximum surface temperature) does not truly represent the upper limit of how far beneath the surface SSTR can probe. For estimating the uncertainty of SSTR measurements of a buried substrate a priori, sensitivity calculations provide the best means. Thus, detailed sensitivity calculations are provided to guide future measurements. Due to the steady-state nature of SSTR, it can measure the thermal conductivity of buried substrates that are traditionally challenging by transient pump–probe techniques, exemplified by measuring three control samples. We also discuss the required criteria for SSTR to isolate the thermal properties of a buried film. Our study establishes SSTR as a suitable technique for thermal characterizations of sub-surface buried substrates in typical device geometries.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0049531</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7853-9282</orcidid><orcidid>https://orcid.org/0000-0001-9576-9768</orcidid><orcidid>https://orcid.org/0000-0002-9846-7164</orcidid><orcidid>https://orcid.org/0000-0003-4289-7736</orcidid><orcidid>https://orcid.org/0000-0002-3681-7245</orcidid><orcidid>https://orcid.org/0000-0001-6427-5327</orcidid><orcidid>https://orcid.org/0000-0002-3409-4960</orcidid><orcidid>https://orcid.org/0000-0001-8622-5902</orcidid><orcidid>https://orcid.org/0000-0002-3403-743X</orcidid><orcidid>https://orcid.org/0000-0002-7697-8115</orcidid><orcidid>https://orcid.org/0000-0002-4090-0826</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2021-06, Vol.92 (6), p.064906-064906
issn 0034-6748
1089-7623
language eng
recordid cdi_scitation_primary_10_1063_5_0049531
source AIP Journals Complete; Alma/SFX Local Collection
subjects Heat conductivity
Heat transfer
Mathematical analysis
Scientific apparatus & instruments
Sensitivity
Steady state
Substrates
Thermal conductivity
Thermodynamic properties
title Thermal conductivity measurements of sub-surface buried substrates by steady-state thermoreflectance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A01%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20conductivity%20measurements%20of%20sub-surface%20buried%20substrates%20by%20steady-state%20thermoreflectance&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Hoque,%20Md%20Shafkat%20Bin&rft.date=2021-06-01&rft.volume=92&rft.issue=6&rft.spage=064906&rft.epage=064906&rft.pages=064906-064906&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/5.0049531&rft_dat=%3Cproquest_scita%3E2546332253%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546332253&rft_id=info:pmid/&rfr_iscdi=true