CNN based change detection for urban imagery

Identification of changes in the green cover of urban settlements and keeping them in check has become obligatory because of the eminent dangers of climate change and pollution. The exact location, accurate identification of topographic features and the extraction of the required parameters for thei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Elaveni, P., Sindhuja, G. Sai, Dickson, Samantha Leann
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2336
creator Elaveni, P.
Sindhuja, G. Sai
Dickson, Samantha Leann
description Identification of changes in the green cover of urban settlements and keeping them in check has become obligatory because of the eminent dangers of climate change and pollution. The exact location, accurate identification of topographic features and the extraction of the required parameters for their identification form a basis for change detection in the region of interest. In this project to support object-based classification, the required spectral band features are obtained. The extracted features are then used for computing the vegetation index based on which the images are labelled and are then used to train the CNN classifier. The percentage difference in vegetation index is then measured and the image is classified accordingly.
doi_str_mv 10.1063/5.0047253
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0047253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2505542618</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-34bbae960d2e73115b87b24780a2fecf8f1395400aef77224e75a5acf2d9798f3</originalsourceid><addsrcrecordid>eNp9kE1LwzAcxoMoWKcHv0HAm9j5z3tylOEbjHlR8BaSNpkd2takFfbt7djAm6fn8nteeBC6JDAnINmtmANwRQU7QgURgpRKEnmMCgDDS8rZ-yk6y3kDQI1SukA3i9UKe5dDjasP164DrsMQqqHpWhy7hMfkXYubL7cOaXuOTqL7zOHioDP09nD_ungqly-Pz4u7ZdkTqYeSce9dMBJqGhQjRHitPOVKg6MxVFFHwozgAC5EpSjlQQknXBVpbZTRkc3Q1T63T933GPJgN92Y2qnSUgFCcCqJnqjrPZWrZnC7xbZP09K0tT9dssIenrB9Hf-DCdjddX8G9gvAp14J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2505542618</pqid></control><display><type>conference_proceeding</type><title>CNN based change detection for urban imagery</title><source>AIP Journals Complete</source><creator>Elaveni, P. ; Sindhuja, G. Sai ; Dickson, Samantha Leann</creator><contributor>Panda, Satyananda ; John, Sunil Jacob ; Awasthi, Ashish</contributor><creatorcontrib>Elaveni, P. ; Sindhuja, G. Sai ; Dickson, Samantha Leann ; Panda, Satyananda ; John, Sunil Jacob ; Awasthi, Ashish</creatorcontrib><description>Identification of changes in the green cover of urban settlements and keeping them in check has become obligatory because of the eminent dangers of climate change and pollution. The exact location, accurate identification of topographic features and the extraction of the required parameters for their identification form a basis for change detection in the region of interest. In this project to support object-based classification, the required spectral band features are obtained. The extracted features are then used for computing the vegetation index based on which the images are labelled and are then used to train the CNN classifier. The percentage difference in vegetation index is then measured and the image is classified accordingly.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0047253</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Change detection ; Feature extraction ; Parameter identification ; Vegetation ; Vegetation index</subject><ispartof>AIP conference proceedings, 2021, Vol.2336 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0047253$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4497,23910,23911,25119,27903,27904,76131</link.rule.ids></links><search><contributor>Panda, Satyananda</contributor><contributor>John, Sunil Jacob</contributor><contributor>Awasthi, Ashish</contributor><creatorcontrib>Elaveni, P.</creatorcontrib><creatorcontrib>Sindhuja, G. Sai</creatorcontrib><creatorcontrib>Dickson, Samantha Leann</creatorcontrib><title>CNN based change detection for urban imagery</title><title>AIP conference proceedings</title><description>Identification of changes in the green cover of urban settlements and keeping them in check has become obligatory because of the eminent dangers of climate change and pollution. The exact location, accurate identification of topographic features and the extraction of the required parameters for their identification form a basis for change detection in the region of interest. In this project to support object-based classification, the required spectral band features are obtained. The extracted features are then used for computing the vegetation index based on which the images are labelled and are then used to train the CNN classifier. The percentage difference in vegetation index is then measured and the image is classified accordingly.</description><subject>Change detection</subject><subject>Feature extraction</subject><subject>Parameter identification</subject><subject>Vegetation</subject><subject>Vegetation index</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LwzAcxoMoWKcHv0HAm9j5z3tylOEbjHlR8BaSNpkd2takFfbt7djAm6fn8nteeBC6JDAnINmtmANwRQU7QgURgpRKEnmMCgDDS8rZ-yk6y3kDQI1SukA3i9UKe5dDjasP164DrsMQqqHpWhy7hMfkXYubL7cOaXuOTqL7zOHioDP09nD_ungqly-Pz4u7ZdkTqYeSce9dMBJqGhQjRHitPOVKg6MxVFFHwozgAC5EpSjlQQknXBVpbZTRkc3Q1T63T933GPJgN92Y2qnSUgFCcCqJnqjrPZWrZnC7xbZP09K0tT9dssIenrB9Hf-DCdjddX8G9gvAp14J</recordid><startdate>20210326</startdate><enddate>20210326</enddate><creator>Elaveni, P.</creator><creator>Sindhuja, G. Sai</creator><creator>Dickson, Samantha Leann</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210326</creationdate><title>CNN based change detection for urban imagery</title><author>Elaveni, P. ; Sindhuja, G. Sai ; Dickson, Samantha Leann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-34bbae960d2e73115b87b24780a2fecf8f1395400aef77224e75a5acf2d9798f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Change detection</topic><topic>Feature extraction</topic><topic>Parameter identification</topic><topic>Vegetation</topic><topic>Vegetation index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elaveni, P.</creatorcontrib><creatorcontrib>Sindhuja, G. Sai</creatorcontrib><creatorcontrib>Dickson, Samantha Leann</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elaveni, P.</au><au>Sindhuja, G. Sai</au><au>Dickson, Samantha Leann</au><au>Panda, Satyananda</au><au>John, Sunil Jacob</au><au>Awasthi, Ashish</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>CNN based change detection for urban imagery</atitle><btitle>AIP conference proceedings</btitle><date>2021-03-26</date><risdate>2021</risdate><volume>2336</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Identification of changes in the green cover of urban settlements and keeping them in check has become obligatory because of the eminent dangers of climate change and pollution. The exact location, accurate identification of topographic features and the extraction of the required parameters for their identification form a basis for change detection in the region of interest. In this project to support object-based classification, the required spectral band features are obtained. The extracted features are then used for computing the vegetation index based on which the images are labelled and are then used to train the CNN classifier. The percentage difference in vegetation index is then measured and the image is classified accordingly.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0047253</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2021, Vol.2336 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0047253
source AIP Journals Complete
subjects Change detection
Feature extraction
Parameter identification
Vegetation
Vegetation index
title CNN based change detection for urban imagery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T03%3A15%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=CNN%20based%20change%20detection%20for%20urban%20imagery&rft.btitle=AIP%20conference%20proceedings&rft.au=Elaveni,%20P.&rft.date=2021-03-26&rft.volume=2336&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0047253&rft_dat=%3Cproquest_scita%3E2505542618%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505542618&rft_id=info:pmid/&rfr_iscdi=true