CNN based change detection for urban imagery
Identification of changes in the green cover of urban settlements and keeping them in check has become obligatory because of the eminent dangers of climate change and pollution. The exact location, accurate identification of topographic features and the extraction of the required parameters for thei...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2336 |
creator | Elaveni, P. Sindhuja, G. Sai Dickson, Samantha Leann |
description | Identification of changes in the green cover of urban settlements and keeping them in check has become obligatory because of the eminent dangers of climate change and pollution. The exact location, accurate identification of topographic features and the extraction of the required parameters for their identification form a basis for change detection in the region of interest. In this project to support object-based classification, the required spectral band features are obtained. The extracted features are then used for computing the vegetation index based on which the images are labelled and are then used to train the CNN classifier. The percentage difference in vegetation index is then measured and the image is classified accordingly. |
doi_str_mv | 10.1063/5.0047253 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0047253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2505542618</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-34bbae960d2e73115b87b24780a2fecf8f1395400aef77224e75a5acf2d9798f3</originalsourceid><addsrcrecordid>eNp9kE1LwzAcxoMoWKcHv0HAm9j5z3tylOEbjHlR8BaSNpkd2takFfbt7djAm6fn8nteeBC6JDAnINmtmANwRQU7QgURgpRKEnmMCgDDS8rZ-yk6y3kDQI1SukA3i9UKe5dDjasP164DrsMQqqHpWhy7hMfkXYubL7cOaXuOTqL7zOHioDP09nD_ungqly-Pz4u7ZdkTqYeSce9dMBJqGhQjRHitPOVKg6MxVFFHwozgAC5EpSjlQQknXBVpbZTRkc3Q1T63T933GPJgN92Y2qnSUgFCcCqJnqjrPZWrZnC7xbZP09K0tT9dssIenrB9Hf-DCdjddX8G9gvAp14J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2505542618</pqid></control><display><type>conference_proceeding</type><title>CNN based change detection for urban imagery</title><source>AIP Journals Complete</source><creator>Elaveni, P. ; Sindhuja, G. Sai ; Dickson, Samantha Leann</creator><contributor>Panda, Satyananda ; John, Sunil Jacob ; Awasthi, Ashish</contributor><creatorcontrib>Elaveni, P. ; Sindhuja, G. Sai ; Dickson, Samantha Leann ; Panda, Satyananda ; John, Sunil Jacob ; Awasthi, Ashish</creatorcontrib><description>Identification of changes in the green cover of urban settlements and keeping them in check has become obligatory because of the eminent dangers of climate change and pollution. The exact location, accurate identification of topographic features and the extraction of the required parameters for their identification form a basis for change detection in the region of interest. In this project to support object-based classification, the required spectral band features are obtained. The extracted features are then used for computing the vegetation index based on which the images are labelled and are then used to train the CNN classifier. The percentage difference in vegetation index is then measured and the image is classified accordingly.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0047253</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Change detection ; Feature extraction ; Parameter identification ; Vegetation ; Vegetation index</subject><ispartof>AIP conference proceedings, 2021, Vol.2336 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0047253$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4497,23910,23911,25119,27903,27904,76131</link.rule.ids></links><search><contributor>Panda, Satyananda</contributor><contributor>John, Sunil Jacob</contributor><contributor>Awasthi, Ashish</contributor><creatorcontrib>Elaveni, P.</creatorcontrib><creatorcontrib>Sindhuja, G. Sai</creatorcontrib><creatorcontrib>Dickson, Samantha Leann</creatorcontrib><title>CNN based change detection for urban imagery</title><title>AIP conference proceedings</title><description>Identification of changes in the green cover of urban settlements and keeping them in check has become obligatory because of the eminent dangers of climate change and pollution. The exact location, accurate identification of topographic features and the extraction of the required parameters for their identification form a basis for change detection in the region of interest. In this project to support object-based classification, the required spectral band features are obtained. The extracted features are then used for computing the vegetation index based on which the images are labelled and are then used to train the CNN classifier. The percentage difference in vegetation index is then measured and the image is classified accordingly.</description><subject>Change detection</subject><subject>Feature extraction</subject><subject>Parameter identification</subject><subject>Vegetation</subject><subject>Vegetation index</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LwzAcxoMoWKcHv0HAm9j5z3tylOEbjHlR8BaSNpkd2takFfbt7djAm6fn8nteeBC6JDAnINmtmANwRQU7QgURgpRKEnmMCgDDS8rZ-yk6y3kDQI1SukA3i9UKe5dDjasP164DrsMQqqHpWhy7hMfkXYubL7cOaXuOTqL7zOHioDP09nD_ungqly-Pz4u7ZdkTqYeSce9dMBJqGhQjRHitPOVKg6MxVFFHwozgAC5EpSjlQQknXBVpbZTRkc3Q1T63T933GPJgN92Y2qnSUgFCcCqJnqjrPZWrZnC7xbZP09K0tT9dssIenrB9Hf-DCdjddX8G9gvAp14J</recordid><startdate>20210326</startdate><enddate>20210326</enddate><creator>Elaveni, P.</creator><creator>Sindhuja, G. Sai</creator><creator>Dickson, Samantha Leann</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210326</creationdate><title>CNN based change detection for urban imagery</title><author>Elaveni, P. ; Sindhuja, G. Sai ; Dickson, Samantha Leann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-34bbae960d2e73115b87b24780a2fecf8f1395400aef77224e75a5acf2d9798f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Change detection</topic><topic>Feature extraction</topic><topic>Parameter identification</topic><topic>Vegetation</topic><topic>Vegetation index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elaveni, P.</creatorcontrib><creatorcontrib>Sindhuja, G. Sai</creatorcontrib><creatorcontrib>Dickson, Samantha Leann</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elaveni, P.</au><au>Sindhuja, G. Sai</au><au>Dickson, Samantha Leann</au><au>Panda, Satyananda</au><au>John, Sunil Jacob</au><au>Awasthi, Ashish</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>CNN based change detection for urban imagery</atitle><btitle>AIP conference proceedings</btitle><date>2021-03-26</date><risdate>2021</risdate><volume>2336</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Identification of changes in the green cover of urban settlements and keeping them in check has become obligatory because of the eminent dangers of climate change and pollution. The exact location, accurate identification of topographic features and the extraction of the required parameters for their identification form a basis for change detection in the region of interest. In this project to support object-based classification, the required spectral band features are obtained. The extracted features are then used for computing the vegetation index based on which the images are labelled and are then used to train the CNN classifier. The percentage difference in vegetation index is then measured and the image is classified accordingly.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0047253</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2021, Vol.2336 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0047253 |
source | AIP Journals Complete |
subjects | Change detection Feature extraction Parameter identification Vegetation Vegetation index |
title | CNN based change detection for urban imagery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T03%3A15%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=CNN%20based%20change%20detection%20for%20urban%20imagery&rft.btitle=AIP%20conference%20proceedings&rft.au=Elaveni,%20P.&rft.date=2021-03-26&rft.volume=2336&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0047253&rft_dat=%3Cproquest_scita%3E2505542618%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505542618&rft_id=info:pmid/&rfr_iscdi=true |