Direct numerical simulation analysis of heat transfer deterioration of supercritical fluids in a vertical tube at a high ratio of heat flux to mass flowrate
The heat transfer deterioration (HTD) of supercritical water in heated vertical tubes at high heat flux to mass flow rate ratios is investigated using direct numerical simulations at an inlet Reynolds number of R e b 0 = 5400 based on the inlet bulk velocity and tube diameter. The heated tube has a...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2021-05, Vol.33 (5) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 33 |
creator | Zhao, Pinghui Wan, Teng Jin, Yixuan Chen, Zhansheng Li, Yuanjie Peng, Changhong |
description | The heat transfer deterioration (HTD) of supercritical water in heated vertical tubes at high heat flux to mass flow rate ratios is investigated using direct numerical simulations at an inlet Reynolds number of
R
e
b
0
=
5400 based on the inlet bulk velocity and tube diameter. The heated tube has a length of 75 times the tube diameter. Both forced and mixed convections (upward and downward flows) are simulated. The results show that primary and secondary HTDs occur in all flows considered herein. The causes of the HTD are comprehensively analyzed using the Fukagata–Iwamoto–Kasagi identity, turbulent heat flux, turbulence production, and turbulent kinetic energy. The FIK decomposition shows that the turbulent contribution
N
u
2 is the dominant part of the total Nusselt number
N
u
FIK. The turbulence reduction caused by flow acceleration is the main reason for the decrease in
N
u
2 and the occurrence of the primary HTD. Furthermore, buoyancy first damps the turbulence, exacerbating the HTD, and then forms an M-shaped velocity profile, which enhances the heat transfer. The secondary HTD, which is less pronounced than the primary one, comes from the decrease in the mean enthalpy gradient and enthalpy fluctuation caused by the position variation of the maximum specific heat. |
doi_str_mv | 10.1063/5.0046863 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0046863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2525151062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-34b18a833553da5bfcfc7b7d17d34f9974a4f4ebe3c860225e6b371dd1e014ef3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4A8ssQIpxY_YSZaoPKVKbGAdOc6YukrqYjtA_4WPxTQVS1bj8Zw50lyEzimZUSL5tZgRkstS8gM0oaSsskJKefj7LkgmJafH6CSEFSGEV0xO0Pet9aAjXg89eKtVh4Pth05F69ZYrVW3DTZgZ_ASVMTRq3Uw4HELMeHOj1wah2EDXnsbdw7TDbYN2CYF_gA_fsahAZwkCi_t2xLvdv_MaeMLR4d7FUJq3Gcawyk6MqoLcLavU_R6f_cyf8wWzw9P85tFplnFYsbzhpaq5FwI3irRGG100RQtLVqem6oqcpWbHBrgupSEMQGy4QVtWwqE5mD4FF2M3o137wOEWK_c4NPxoWaCCSpStCxRlyOlvQvBg6k33vbKb2tK6t_wa1Hvw0_s1cgGbeMupH_gHxF2hxk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525151062</pqid></control><display><type>article</type><title>Direct numerical simulation analysis of heat transfer deterioration of supercritical fluids in a vertical tube at a high ratio of heat flux to mass flowrate</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Zhao, Pinghui ; Wan, Teng ; Jin, Yixuan ; Chen, Zhansheng ; Li, Yuanjie ; Peng, Changhong</creator><creatorcontrib>Zhao, Pinghui ; Wan, Teng ; Jin, Yixuan ; Chen, Zhansheng ; Li, Yuanjie ; Peng, Changhong</creatorcontrib><description>The heat transfer deterioration (HTD) of supercritical water in heated vertical tubes at high heat flux to mass flow rate ratios is investigated using direct numerical simulations at an inlet Reynolds number of
R
e
b
0
=
5400 based on the inlet bulk velocity and tube diameter. The heated tube has a length of 75 times the tube diameter. Both forced and mixed convections (upward and downward flows) are simulated. The results show that primary and secondary HTDs occur in all flows considered herein. The causes of the HTD are comprehensively analyzed using the Fukagata–Iwamoto–Kasagi identity, turbulent heat flux, turbulence production, and turbulent kinetic energy. The FIK decomposition shows that the turbulent contribution
N
u
2 is the dominant part of the total Nusselt number
N
u
FIK. The turbulence reduction caused by flow acceleration is the main reason for the decrease in
N
u
2 and the occurrence of the primary HTD. Furthermore, buoyancy first damps the turbulence, exacerbating the HTD, and then forms an M-shaped velocity profile, which enhances the heat transfer. The secondary HTD, which is less pronounced than the primary one, comes from the decrease in the mean enthalpy gradient and enthalpy fluctuation caused by the position variation of the maximum specific heat.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0046863</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Acceleration ; Computational fluid dynamics ; Deterioration ; Direct numerical simulation ; Enthalpy ; Fluid dynamics ; Fluid flow ; Heat flux ; Heat transfer ; Kinetic energy ; Mass flow rate ; Physics ; Reynolds number ; Simulation ; Supercritical fluids ; Tubes ; Turbulence ; Turbulent flow ; Velocity distribution</subject><ispartof>Physics of fluids (1994), 2021-05, Vol.33 (5)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-34b18a833553da5bfcfc7b7d17d34f9974a4f4ebe3c860225e6b371dd1e014ef3</citedby><cites>FETCH-LOGICAL-c292t-34b18a833553da5bfcfc7b7d17d34f9974a4f4ebe3c860225e6b371dd1e014ef3</cites><orcidid>0000-0003-4276-6998 ; 0000-0002-0655-8625 ; 0000-0003-0368-9301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhao, Pinghui</creatorcontrib><creatorcontrib>Wan, Teng</creatorcontrib><creatorcontrib>Jin, Yixuan</creatorcontrib><creatorcontrib>Chen, Zhansheng</creatorcontrib><creatorcontrib>Li, Yuanjie</creatorcontrib><creatorcontrib>Peng, Changhong</creatorcontrib><title>Direct numerical simulation analysis of heat transfer deterioration of supercritical fluids in a vertical tube at a high ratio of heat flux to mass flowrate</title><title>Physics of fluids (1994)</title><description>The heat transfer deterioration (HTD) of supercritical water in heated vertical tubes at high heat flux to mass flow rate ratios is investigated using direct numerical simulations at an inlet Reynolds number of
R
e
b
0
=
5400 based on the inlet bulk velocity and tube diameter. The heated tube has a length of 75 times the tube diameter. Both forced and mixed convections (upward and downward flows) are simulated. The results show that primary and secondary HTDs occur in all flows considered herein. The causes of the HTD are comprehensively analyzed using the Fukagata–Iwamoto–Kasagi identity, turbulent heat flux, turbulence production, and turbulent kinetic energy. The FIK decomposition shows that the turbulent contribution
N
u
2 is the dominant part of the total Nusselt number
N
u
FIK. The turbulence reduction caused by flow acceleration is the main reason for the decrease in
N
u
2 and the occurrence of the primary HTD. Furthermore, buoyancy first damps the turbulence, exacerbating the HTD, and then forms an M-shaped velocity profile, which enhances the heat transfer. The secondary HTD, which is less pronounced than the primary one, comes from the decrease in the mean enthalpy gradient and enthalpy fluctuation caused by the position variation of the maximum specific heat.</description><subject>Acceleration</subject><subject>Computational fluid dynamics</subject><subject>Deterioration</subject><subject>Direct numerical simulation</subject><subject>Enthalpy</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Kinetic energy</subject><subject>Mass flow rate</subject><subject>Physics</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Supercritical fluids</subject><subject>Tubes</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Velocity distribution</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqWw4A8ssQIpxY_YSZaoPKVKbGAdOc6YukrqYjtA_4WPxTQVS1bj8Zw50lyEzimZUSL5tZgRkstS8gM0oaSsskJKefj7LkgmJafH6CSEFSGEV0xO0Pet9aAjXg89eKtVh4Pth05F69ZYrVW3DTZgZ_ASVMTRq3Uw4HELMeHOj1wah2EDXnsbdw7TDbYN2CYF_gA_fsahAZwkCi_t2xLvdv_MaeMLR4d7FUJq3Gcawyk6MqoLcLavU_R6f_cyf8wWzw9P85tFplnFYsbzhpaq5FwI3irRGG100RQtLVqem6oqcpWbHBrgupSEMQGy4QVtWwqE5mD4FF2M3o137wOEWK_c4NPxoWaCCSpStCxRlyOlvQvBg6k33vbKb2tK6t_wa1Hvw0_s1cgGbeMupH_gHxF2hxk</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Zhao, Pinghui</creator><creator>Wan, Teng</creator><creator>Jin, Yixuan</creator><creator>Chen, Zhansheng</creator><creator>Li, Yuanjie</creator><creator>Peng, Changhong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4276-6998</orcidid><orcidid>https://orcid.org/0000-0002-0655-8625</orcidid><orcidid>https://orcid.org/0000-0003-0368-9301</orcidid></search><sort><creationdate>202105</creationdate><title>Direct numerical simulation analysis of heat transfer deterioration of supercritical fluids in a vertical tube at a high ratio of heat flux to mass flowrate</title><author>Zhao, Pinghui ; Wan, Teng ; Jin, Yixuan ; Chen, Zhansheng ; Li, Yuanjie ; Peng, Changhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-34b18a833553da5bfcfc7b7d17d34f9974a4f4ebe3c860225e6b371dd1e014ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acceleration</topic><topic>Computational fluid dynamics</topic><topic>Deterioration</topic><topic>Direct numerical simulation</topic><topic>Enthalpy</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Kinetic energy</topic><topic>Mass flow rate</topic><topic>Physics</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Supercritical fluids</topic><topic>Tubes</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Pinghui</creatorcontrib><creatorcontrib>Wan, Teng</creatorcontrib><creatorcontrib>Jin, Yixuan</creatorcontrib><creatorcontrib>Chen, Zhansheng</creatorcontrib><creatorcontrib>Li, Yuanjie</creatorcontrib><creatorcontrib>Peng, Changhong</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Pinghui</au><au>Wan, Teng</au><au>Jin, Yixuan</au><au>Chen, Zhansheng</au><au>Li, Yuanjie</au><au>Peng, Changhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct numerical simulation analysis of heat transfer deterioration of supercritical fluids in a vertical tube at a high ratio of heat flux to mass flowrate</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2021-05</date><risdate>2021</risdate><volume>33</volume><issue>5</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The heat transfer deterioration (HTD) of supercritical water in heated vertical tubes at high heat flux to mass flow rate ratios is investigated using direct numerical simulations at an inlet Reynolds number of
R
e
b
0
=
5400 based on the inlet bulk velocity and tube diameter. The heated tube has a length of 75 times the tube diameter. Both forced and mixed convections (upward and downward flows) are simulated. The results show that primary and secondary HTDs occur in all flows considered herein. The causes of the HTD are comprehensively analyzed using the Fukagata–Iwamoto–Kasagi identity, turbulent heat flux, turbulence production, and turbulent kinetic energy. The FIK decomposition shows that the turbulent contribution
N
u
2 is the dominant part of the total Nusselt number
N
u
FIK. The turbulence reduction caused by flow acceleration is the main reason for the decrease in
N
u
2 and the occurrence of the primary HTD. Furthermore, buoyancy first damps the turbulence, exacerbating the HTD, and then forms an M-shaped velocity profile, which enhances the heat transfer. The secondary HTD, which is less pronounced than the primary one, comes from the decrease in the mean enthalpy gradient and enthalpy fluctuation caused by the position variation of the maximum specific heat.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0046863</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-4276-6998</orcidid><orcidid>https://orcid.org/0000-0002-0655-8625</orcidid><orcidid>https://orcid.org/0000-0003-0368-9301</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2021-05, Vol.33 (5) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0046863 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Acceleration Computational fluid dynamics Deterioration Direct numerical simulation Enthalpy Fluid dynamics Fluid flow Heat flux Heat transfer Kinetic energy Mass flow rate Physics Reynolds number Simulation Supercritical fluids Tubes Turbulence Turbulent flow Velocity distribution |
title | Direct numerical simulation analysis of heat transfer deterioration of supercritical fluids in a vertical tube at a high ratio of heat flux to mass flowrate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A14%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20numerical%20simulation%20analysis%20of%20heat%20transfer%20deterioration%20of%20supercritical%20fluids%20in%20a%20vertical%20tube%20at%20a%20high%20ratio%20of%20heat%20flux%20to%20mass%20flowrate&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Zhao,%20Pinghui&rft.date=2021-05&rft.volume=33&rft.issue=5&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0046863&rft_dat=%3Cproquest_scita%3E2525151062%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2525151062&rft_id=info:pmid/&rfr_iscdi=true |