Elastic response of wire frame glasses. I. Two dimensional model
We study the elastic response of concentrated suspensions of rigid wire frame particles to a step strain. These particles are constructed from infinitely thin, rigid rods of length L. We specifically compare straight rod-like particles to bent and branched wire frames. In dense suspensions, the wire...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2021-06, Vol.154 (24), p.244904-244904 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 244904 |
---|---|
container_issue | 24 |
container_start_page | 244904 |
container_title | The Journal of chemical physics |
container_volume | 154 |
creator | King, David A. Doi, Masao Eiser, Erika |
description | We study the elastic response of concentrated suspensions of rigid wire frame particles to a step strain. These particles are constructed from infinitely thin, rigid rods of length L. We specifically compare straight rod-like particles to bent and branched wire frames. In dense suspensions, the wire frames are frozen in a disordered state by the topological entanglements between their arms. We present a simple, geometric method to find the scaling of the elastic stress with concentration in these glassy systems. We apply this method to a simple 2D model system where a test particle is placed on a plane and constrained by a random distribution of points with number density ν. Two striking differences between wire frame and rod suspensions are found: (1) The linear elasticity per particle for wire frames is very large, scaling like ν2L4, whereas for rods, it is much smaller and independent of concentration. (2) Rods always shear thin but wire frames shear harden for concentrations less than ∼K/kBTL4, where K is the bending modulus of the particles. The deformation of wire frames is found to be important even for small strains, with the proportion of deformed particles at a particular strain, γ, being given by (νL2)2γ2. Our results agree well with simple numerical calculations for the 2D system. |
doi_str_mv | 10.1063/5.0046524 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0046524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2546756097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-e30018bc328226fba8a71cf14a0b83708d32f085b487161025cca7e76530e0bc3</originalsourceid><addsrcrecordid>eNp90M1LwzAUAPAgCs7pwf8g4EWF1pe0-ehNGVMHAy_zXNI0kY62qUnn8L83Y0NBwdM7vN_7ROiSQEqAZ3csBcg5o_kRmhCQRSJ4AcdoAkBJUnDgp-gshDUAEEHzCbqftyqMjcbehMH1wWBn8bbxBluvOoPfYjqYkOJFildbh-umM31oXK9a3LnatOfoxKo2mItDnKLXx_lq9pwsX54Ws4dlorOCjYnJ4kRZ6YxKSrmtlFSCaEtyBZXMBMg6oxYkq3IpCCdAmdZKGMFZBgZi3RRd7_sO3r1vTBjLrgnatK3qjduEkjIGlBeckUivftG12_i48U7lXDAOhYjqZq-0dyF4Y8vBN53ynyWBcvfLkpWHX0Z7u7dBN6Ma4_nf-MP5H1gOtf0P_-38Bfb6f0c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546756097</pqid></control><display><type>article</type><title>Elastic response of wire frame glasses. I. Two dimensional model</title><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><creator>King, David A. ; Doi, Masao ; Eiser, Erika</creator><creatorcontrib>King, David A. ; Doi, Masao ; Eiser, Erika</creatorcontrib><description>We study the elastic response of concentrated suspensions of rigid wire frame particles to a step strain. These particles are constructed from infinitely thin, rigid rods of length L. We specifically compare straight rod-like particles to bent and branched wire frames. In dense suspensions, the wire frames are frozen in a disordered state by the topological entanglements between their arms. We present a simple, geometric method to find the scaling of the elastic stress with concentration in these glassy systems. We apply this method to a simple 2D model system where a test particle is placed on a plane and constrained by a random distribution of points with number density ν. Two striking differences between wire frame and rod suspensions are found: (1) The linear elasticity per particle for wire frames is very large, scaling like ν2L4, whereas for rods, it is much smaller and independent of concentration. (2) Rods always shear thin but wire frames shear harden for concentrations less than ∼K/kBTL4, where K is the bending modulus of the particles. The deformation of wire frames is found to be important even for small strains, with the proportion of deformed particles at a particular strain, γ, being given by (νL2)2γ2. Our results agree well with simple numerical calculations for the 2D system.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0046524</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Bending modulus ; Deformation ; Frames ; Rods ; Stress concentration ; Two dimensional models ; Wire</subject><ispartof>The Journal of chemical physics, 2021-06, Vol.154 (24), p.244904-244904</ispartof><rights>Author(s)</rights><rights>2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-e30018bc328226fba8a71cf14a0b83708d32f085b487161025cca7e76530e0bc3</citedby><cites>FETCH-LOGICAL-c395t-e30018bc328226fba8a71cf14a0b83708d32f085b487161025cca7e76530e0bc3</cites><orcidid>0000-0003-4166-4914 ; 0000-0003-2881-8157 ; 0000-0001-9521-6733</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0046524$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids></links><search><creatorcontrib>King, David A.</creatorcontrib><creatorcontrib>Doi, Masao</creatorcontrib><creatorcontrib>Eiser, Erika</creatorcontrib><title>Elastic response of wire frame glasses. I. Two dimensional model</title><title>The Journal of chemical physics</title><description>We study the elastic response of concentrated suspensions of rigid wire frame particles to a step strain. These particles are constructed from infinitely thin, rigid rods of length L. We specifically compare straight rod-like particles to bent and branched wire frames. In dense suspensions, the wire frames are frozen in a disordered state by the topological entanglements between their arms. We present a simple, geometric method to find the scaling of the elastic stress with concentration in these glassy systems. We apply this method to a simple 2D model system where a test particle is placed on a plane and constrained by a random distribution of points with number density ν. Two striking differences between wire frame and rod suspensions are found: (1) The linear elasticity per particle for wire frames is very large, scaling like ν2L4, whereas for rods, it is much smaller and independent of concentration. (2) Rods always shear thin but wire frames shear harden for concentrations less than ∼K/kBTL4, where K is the bending modulus of the particles. The deformation of wire frames is found to be important even for small strains, with the proportion of deformed particles at a particular strain, γ, being given by (νL2)2γ2. Our results agree well with simple numerical calculations for the 2D system.</description><subject>Bending modulus</subject><subject>Deformation</subject><subject>Frames</subject><subject>Rods</subject><subject>Stress concentration</subject><subject>Two dimensional models</subject><subject>Wire</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90M1LwzAUAPAgCs7pwf8g4EWF1pe0-ehNGVMHAy_zXNI0kY62qUnn8L83Y0NBwdM7vN_7ROiSQEqAZ3csBcg5o_kRmhCQRSJ4AcdoAkBJUnDgp-gshDUAEEHzCbqftyqMjcbehMH1wWBn8bbxBluvOoPfYjqYkOJFildbh-umM31oXK9a3LnatOfoxKo2mItDnKLXx_lq9pwsX54Ws4dlorOCjYnJ4kRZ6YxKSrmtlFSCaEtyBZXMBMg6oxYkq3IpCCdAmdZKGMFZBgZi3RRd7_sO3r1vTBjLrgnatK3qjduEkjIGlBeckUivftG12_i48U7lXDAOhYjqZq-0dyF4Y8vBN53ynyWBcvfLkpWHX0Z7u7dBN6Ma4_nf-MP5H1gOtf0P_-38Bfb6f0c</recordid><startdate>20210628</startdate><enddate>20210628</enddate><creator>King, David A.</creator><creator>Doi, Masao</creator><creator>Eiser, Erika</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4166-4914</orcidid><orcidid>https://orcid.org/0000-0003-2881-8157</orcidid><orcidid>https://orcid.org/0000-0001-9521-6733</orcidid></search><sort><creationdate>20210628</creationdate><title>Elastic response of wire frame glasses. I. Two dimensional model</title><author>King, David A. ; Doi, Masao ; Eiser, Erika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-e30018bc328226fba8a71cf14a0b83708d32f085b487161025cca7e76530e0bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bending modulus</topic><topic>Deformation</topic><topic>Frames</topic><topic>Rods</topic><topic>Stress concentration</topic><topic>Two dimensional models</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>King, David A.</creatorcontrib><creatorcontrib>Doi, Masao</creatorcontrib><creatorcontrib>Eiser, Erika</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>King, David A.</au><au>Doi, Masao</au><au>Eiser, Erika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elastic response of wire frame glasses. I. Two dimensional model</atitle><jtitle>The Journal of chemical physics</jtitle><date>2021-06-28</date><risdate>2021</risdate><volume>154</volume><issue>24</issue><spage>244904</spage><epage>244904</epage><pages>244904-244904</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We study the elastic response of concentrated suspensions of rigid wire frame particles to a step strain. These particles are constructed from infinitely thin, rigid rods of length L. We specifically compare straight rod-like particles to bent and branched wire frames. In dense suspensions, the wire frames are frozen in a disordered state by the topological entanglements between their arms. We present a simple, geometric method to find the scaling of the elastic stress with concentration in these glassy systems. We apply this method to a simple 2D model system where a test particle is placed on a plane and constrained by a random distribution of points with number density ν. Two striking differences between wire frame and rod suspensions are found: (1) The linear elasticity per particle for wire frames is very large, scaling like ν2L4, whereas for rods, it is much smaller and independent of concentration. (2) Rods always shear thin but wire frames shear harden for concentrations less than ∼K/kBTL4, where K is the bending modulus of the particles. The deformation of wire frames is found to be important even for small strains, with the proportion of deformed particles at a particular strain, γ, being given by (νL2)2γ2. Our results agree well with simple numerical calculations for the 2D system.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0046524</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4166-4914</orcidid><orcidid>https://orcid.org/0000-0003-2881-8157</orcidid><orcidid>https://orcid.org/0000-0001-9521-6733</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2021-06, Vol.154 (24), p.244904-244904 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0046524 |
source | American Institute of Physics (AIP) Journals; Alma/SFX Local Collection |
subjects | Bending modulus Deformation Frames Rods Stress concentration Two dimensional models Wire |
title | Elastic response of wire frame glasses. I. Two dimensional model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A16%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elastic%20response%20of%20wire%20frame%20glasses.%20I.%20Two%20dimensional%20model&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=King,%20David%20A.&rft.date=2021-06-28&rft.volume=154&rft.issue=24&rft.spage=244904&rft.epage=244904&rft.pages=244904-244904&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0046524&rft_dat=%3Cproquest_scita%3E2546756097%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546756097&rft_id=info:pmid/&rfr_iscdi=true |