Effect of the supporting disks shape on nonlinear flow dynamics in a liquid bridge

The stability of convective flows in a non-homogeneous temperature field is affected by the shape of the container hosting the fluid. We present a nonlinear two-phase computational study of convection in a liquid bridge that develops under the action of buoyancy and Marangoni forces. The hydrotherma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2021-04, Vol.33 (4)
Hauptverfasser: Gaponenko, Y., Yasnou, V., Mialdun, A., Nepomnyashchy, A., Shevtsova, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Physics of fluids (1994)
container_volume 33
creator Gaponenko, Y.
Yasnou, V.
Mialdun, A.
Nepomnyashchy, A.
Shevtsova, V.
description The stability of convective flows in a non-homogeneous temperature field is affected by the shape of the container hosting the fluid. We present a nonlinear two-phase computational study of convection in a liquid bridge that develops under the action of buoyancy and Marangoni forces. The hydrothermal instability is examined for three shapes of disks supporting liquid bridge: both disks flat, the upper (hot) disk tapered, and the lower (cold) disk tapered. Steady flow is also analyzed for the case that both disks are tapered. In all the cases of instability, the flow pattern comprises, but is not limited to, a hydrothermal wave with an azimuthal wavenumber m = 2. An intriguing flow pattern is observed in the case of flat disks when the nonlinear interaction between the modes m = 0 and m = 2 leads to quasiperiodic motion forming a torus in the phase space. The torus originates from two traveling waves (TW) with the same mode m = 2 but with distinct (close) frequencies. Note that this was not observed in the one-phase model. The case with a tapered cold disk reveals an oscillatory state with a single TW wave associated with m = 2 mode. In the case of a tapered hot disk, an axially symmetric TW with m = 0 is observed first and, at later times, is accompanied by a TW with m = 2.
doi_str_mv 10.1063/5.0046379
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0046379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515354317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-95110ad4aed799e2a23ef9a396e2e59e9f16ac50892c9b02880a6c11b44f71073</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgCtbqwjcIuFKYmsskM1lKqRcoCKLrkGaSNnWaTJOM0rd3SkUXgqtzFh__4fwAXGI0wYjTWzZBqOS0EkdghFEtiopzfrzfK1RwTvEpOEtpjRCigvAReJlZa3SGwcK8MjD1XRdidn4JG5feE0wr1RkYPPTBt84bFaFtwydsdl5tnE7Qeahg67a9a-AiumZpzsGJVW0yF99zDN7uZ6_Tx2L-_PA0vZsXuiR1LgTDGKmmVKaphDBEEWqsUFRwQwwTRljMlWbDD0SLBSJ1jRTXGC_K0lbDO3QMrg65XQzb3qQs16GPfjgpCcOMspLivbo-KB1DStFY2UW3UXEnMZL7yiST35UN9uZgk3ZZZRf8D_4I8RfKrrH_4b_JXyj9eRo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515354317</pqid></control><display><type>article</type><title>Effect of the supporting disks shape on nonlinear flow dynamics in a liquid bridge</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Gaponenko, Y. ; Yasnou, V. ; Mialdun, A. ; Nepomnyashchy, A. ; Shevtsova, V.</creator><creatorcontrib>Gaponenko, Y. ; Yasnou, V. ; Mialdun, A. ; Nepomnyashchy, A. ; Shevtsova, V.</creatorcontrib><description>The stability of convective flows in a non-homogeneous temperature field is affected by the shape of the container hosting the fluid. We present a nonlinear two-phase computational study of convection in a liquid bridge that develops under the action of buoyancy and Marangoni forces. The hydrothermal instability is examined for three shapes of disks supporting liquid bridge: both disks flat, the upper (hot) disk tapered, and the lower (cold) disk tapered. Steady flow is also analyzed for the case that both disks are tapered. In all the cases of instability, the flow pattern comprises, but is not limited to, a hydrothermal wave with an azimuthal wavenumber m = 2. An intriguing flow pattern is observed in the case of flat disks when the nonlinear interaction between the modes m = 0 and m = 2 leads to quasiperiodic motion forming a torus in the phase space. The torus originates from two traveling waves (TW) with the same mode m = 2 but with distinct (close) frequencies. Note that this was not observed in the one-phase model. The case with a tapered cold disk reveals an oscillatory state with a single TW wave associated with m = 2 mode. In the case of a tapered hot disk, an axially symmetric TW with m = 0 is observed first and, at later times, is accompanied by a TW with m = 2.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0046379</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Cold flow ; Convective flow ; Disks ; Dynamic stability ; Flow distribution ; Flow stability ; Fluid dynamics ; Liquid bridges ; Nonlinear dynamics ; Physics ; Steady flow ; Temperature distribution ; Toruses ; Traveling waves ; Wavelengths</subject><ispartof>Physics of fluids (1994), 2021-04, Vol.33 (4)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-95110ad4aed799e2a23ef9a396e2e59e9f16ac50892c9b02880a6c11b44f71073</citedby><cites>FETCH-LOGICAL-c428t-95110ad4aed799e2a23ef9a396e2e59e9f16ac50892c9b02880a6c11b44f71073</cites><orcidid>0000-0001-9686-5989 ; 0000-0002-7787-2865 ; 0000-0001-6109-5048</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4511,27923,27924</link.rule.ids></links><search><creatorcontrib>Gaponenko, Y.</creatorcontrib><creatorcontrib>Yasnou, V.</creatorcontrib><creatorcontrib>Mialdun, A.</creatorcontrib><creatorcontrib>Nepomnyashchy, A.</creatorcontrib><creatorcontrib>Shevtsova, V.</creatorcontrib><title>Effect of the supporting disks shape on nonlinear flow dynamics in a liquid bridge</title><title>Physics of fluids (1994)</title><description>The stability of convective flows in a non-homogeneous temperature field is affected by the shape of the container hosting the fluid. We present a nonlinear two-phase computational study of convection in a liquid bridge that develops under the action of buoyancy and Marangoni forces. The hydrothermal instability is examined for three shapes of disks supporting liquid bridge: both disks flat, the upper (hot) disk tapered, and the lower (cold) disk tapered. Steady flow is also analyzed for the case that both disks are tapered. In all the cases of instability, the flow pattern comprises, but is not limited to, a hydrothermal wave with an azimuthal wavenumber m = 2. An intriguing flow pattern is observed in the case of flat disks when the nonlinear interaction between the modes m = 0 and m = 2 leads to quasiperiodic motion forming a torus in the phase space. The torus originates from two traveling waves (TW) with the same mode m = 2 but with distinct (close) frequencies. Note that this was not observed in the one-phase model. The case with a tapered cold disk reveals an oscillatory state with a single TW wave associated with m = 2 mode. In the case of a tapered hot disk, an axially symmetric TW with m = 0 is observed first and, at later times, is accompanied by a TW with m = 2.</description><subject>Cold flow</subject><subject>Convective flow</subject><subject>Disks</subject><subject>Dynamic stability</subject><subject>Flow distribution</subject><subject>Flow stability</subject><subject>Fluid dynamics</subject><subject>Liquid bridges</subject><subject>Nonlinear dynamics</subject><subject>Physics</subject><subject>Steady flow</subject><subject>Temperature distribution</subject><subject>Toruses</subject><subject>Traveling waves</subject><subject>Wavelengths</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgCtbqwjcIuFKYmsskM1lKqRcoCKLrkGaSNnWaTJOM0rd3SkUXgqtzFh__4fwAXGI0wYjTWzZBqOS0EkdghFEtiopzfrzfK1RwTvEpOEtpjRCigvAReJlZa3SGwcK8MjD1XRdidn4JG5feE0wr1RkYPPTBt84bFaFtwydsdl5tnE7Qeahg67a9a-AiumZpzsGJVW0yF99zDN7uZ6_Tx2L-_PA0vZsXuiR1LgTDGKmmVKaphDBEEWqsUFRwQwwTRljMlWbDD0SLBSJ1jRTXGC_K0lbDO3QMrg65XQzb3qQs16GPfjgpCcOMspLivbo-KB1DStFY2UW3UXEnMZL7yiST35UN9uZgk3ZZZRf8D_4I8RfKrrH_4b_JXyj9eRo</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Gaponenko, Y.</creator><creator>Yasnou, V.</creator><creator>Mialdun, A.</creator><creator>Nepomnyashchy, A.</creator><creator>Shevtsova, V.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9686-5989</orcidid><orcidid>https://orcid.org/0000-0002-7787-2865</orcidid><orcidid>https://orcid.org/0000-0001-6109-5048</orcidid></search><sort><creationdate>202104</creationdate><title>Effect of the supporting disks shape on nonlinear flow dynamics in a liquid bridge</title><author>Gaponenko, Y. ; Yasnou, V. ; Mialdun, A. ; Nepomnyashchy, A. ; Shevtsova, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-95110ad4aed799e2a23ef9a396e2e59e9f16ac50892c9b02880a6c11b44f71073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cold flow</topic><topic>Convective flow</topic><topic>Disks</topic><topic>Dynamic stability</topic><topic>Flow distribution</topic><topic>Flow stability</topic><topic>Fluid dynamics</topic><topic>Liquid bridges</topic><topic>Nonlinear dynamics</topic><topic>Physics</topic><topic>Steady flow</topic><topic>Temperature distribution</topic><topic>Toruses</topic><topic>Traveling waves</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaponenko, Y.</creatorcontrib><creatorcontrib>Yasnou, V.</creatorcontrib><creatorcontrib>Mialdun, A.</creatorcontrib><creatorcontrib>Nepomnyashchy, A.</creatorcontrib><creatorcontrib>Shevtsova, V.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaponenko, Y.</au><au>Yasnou, V.</au><au>Mialdun, A.</au><au>Nepomnyashchy, A.</au><au>Shevtsova, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of the supporting disks shape on nonlinear flow dynamics in a liquid bridge</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2021-04</date><risdate>2021</risdate><volume>33</volume><issue>4</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The stability of convective flows in a non-homogeneous temperature field is affected by the shape of the container hosting the fluid. We present a nonlinear two-phase computational study of convection in a liquid bridge that develops under the action of buoyancy and Marangoni forces. The hydrothermal instability is examined for three shapes of disks supporting liquid bridge: both disks flat, the upper (hot) disk tapered, and the lower (cold) disk tapered. Steady flow is also analyzed for the case that both disks are tapered. In all the cases of instability, the flow pattern comprises, but is not limited to, a hydrothermal wave with an azimuthal wavenumber m = 2. An intriguing flow pattern is observed in the case of flat disks when the nonlinear interaction between the modes m = 0 and m = 2 leads to quasiperiodic motion forming a torus in the phase space. The torus originates from two traveling waves (TW) with the same mode m = 2 but with distinct (close) frequencies. Note that this was not observed in the one-phase model. The case with a tapered cold disk reveals an oscillatory state with a single TW wave associated with m = 2 mode. In the case of a tapered hot disk, an axially symmetric TW with m = 0 is observed first and, at later times, is accompanied by a TW with m = 2.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0046379</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9686-5989</orcidid><orcidid>https://orcid.org/0000-0002-7787-2865</orcidid><orcidid>https://orcid.org/0000-0001-6109-5048</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2021-04, Vol.33 (4)
issn 1070-6631
1089-7666
language eng
recordid cdi_scitation_primary_10_1063_5_0046379
source AIP Journals Complete; Alma/SFX Local Collection
subjects Cold flow
Convective flow
Disks
Dynamic stability
Flow distribution
Flow stability
Fluid dynamics
Liquid bridges
Nonlinear dynamics
Physics
Steady flow
Temperature distribution
Toruses
Traveling waves
Wavelengths
title Effect of the supporting disks shape on nonlinear flow dynamics in a liquid bridge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A51%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20the%20supporting%20disks%20shape%20on%20nonlinear%20flow%20dynamics%20in%20a%20liquid%20bridge&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Gaponenko,%20Y.&rft.date=2021-04&rft.volume=33&rft.issue=4&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0046379&rft_dat=%3Cproquest_scita%3E2515354317%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515354317&rft_id=info:pmid/&rfr_iscdi=true