On infinite homoclinic orbits induced by unstable periodic orbits in the Lorenz system

In this paper, infinite homoclinic orbits existing in the Lorenz system are analytically presented. Such homoclinic orbits are induced by unstable periodic orbits on bifurcation trees through period-doubling cascades. Each unstable periodic orbit ends at its corresponding homoclinic orbit. Tradition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2021-04, Vol.31 (4), p.043106-043106
Hauptverfasser: Guo, Siyu, Luo, Albert C. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 043106
container_issue 4
container_start_page 043106
container_title Chaos (Woodbury, N.Y.)
container_volume 31
creator Guo, Siyu
Luo, Albert C. J.
description In this paper, infinite homoclinic orbits existing in the Lorenz system are analytically presented. Such homoclinic orbits are induced by unstable periodic orbits on bifurcation trees through period-doubling cascades. Each unstable periodic orbit ends at its corresponding homoclinic orbit. Traditional computational methods cannot obtain homoclinic orbits from the corresponding unstable periodic orbits. This is because unstable periodic orbits in the Lorenz system cannot be achieved in numerical simulations. Herein, the stable and unstable periodic motions to chaos on the period-doubling cascaded bifurcation trees are determined through a discrete mapping method. The corresponding homoclinic orbits induced by the unstable periodic orbits are predicted analytically. A period-doubling bifurcation tree of period-1, period-2, and period-4 motions are generated as an example. The homoclinic orbits relative to unstable period-1, period-2, and period-4 motions are determined. Illustrations of homoclinic orbits and periodic orbits are given. This study presents how to determine infinite homoclinic orbits through unstable periodic orbits in three-dimensional or higher-dimensional nonlinear systems.
doi_str_mv 10.1063/5.0044161
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0044161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550625258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-50d8e0e5ffc5b3dcf2c4dc86275c58866ba987f1533d20b6b244e8f087085c803</originalsourceid><addsrcrecordid>eNp90F1LwzAUBuAgCs7phf8g4I0KnSdpT5pdyvALBrtRb0ubJiyjbWaSCvPX27GhouDVeeE8vBwOIecMJgxEeoMTgCxjgh2QEQM5TXIh-eE2Y5YwBDgmJyGsAIDxFEfkddFR2xnb2ajp0rVONUNW1PnKxjCs6l7pmlYb2nchllWj6Vp76-qfhsalpnPndfdBwyZE3Z6SI1M2QZ_t55i83N89zx6T-eLhaXY7T1QqICYItdSg0RiFVVorw1VWKyl4jgqlFKIqpzI3DNO05lCJimeZlgZkDhKVhHRMLne9a-_eeh1i0dqgdNOUnXZ9KDgiCI4c5UAvftGV6303XDcoyHOJqWSDutop5V0IXpti7W1b-k3BoNh-uMBi_-HBXu9sUDaW0bruC787_w2LdW3-w3-bPwFYNojd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2507785381</pqid></control><display><type>article</type><title>On infinite homoclinic orbits induced by unstable periodic orbits in the Lorenz system</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Guo, Siyu ; Luo, Albert C. J.</creator><creatorcontrib>Guo, Siyu ; Luo, Albert C. J.</creatorcontrib><description>In this paper, infinite homoclinic orbits existing in the Lorenz system are analytically presented. Such homoclinic orbits are induced by unstable periodic orbits on bifurcation trees through period-doubling cascades. Each unstable periodic orbit ends at its corresponding homoclinic orbit. Traditional computational methods cannot obtain homoclinic orbits from the corresponding unstable periodic orbits. This is because unstable periodic orbits in the Lorenz system cannot be achieved in numerical simulations. Herein, the stable and unstable periodic motions to chaos on the period-doubling cascaded bifurcation trees are determined through a discrete mapping method. The corresponding homoclinic orbits induced by the unstable periodic orbits are predicted analytically. A period-doubling bifurcation tree of period-1, period-2, and period-4 motions are generated as an example. The homoclinic orbits relative to unstable period-1, period-2, and period-4 motions are determined. Illustrations of homoclinic orbits and periodic orbits are given. This study presents how to determine infinite homoclinic orbits through unstable periodic orbits in three-dimensional or higher-dimensional nonlinear systems.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/5.0044161</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Bifurcations ; Lorenz system ; Nonlinear systems ; Orbits ; Trees</subject><ispartof>Chaos (Woodbury, N.Y.), 2021-04, Vol.31 (4), p.043106-043106</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-50d8e0e5ffc5b3dcf2c4dc86275c58866ba987f1533d20b6b244e8f087085c803</citedby><cites>FETCH-LOGICAL-c360t-50d8e0e5ffc5b3dcf2c4dc86275c58866ba987f1533d20b6b244e8f087085c803</cites><orcidid>0000-0001-8208-6108 ; 0000-0003-4377-6207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Guo, Siyu</creatorcontrib><creatorcontrib>Luo, Albert C. J.</creatorcontrib><title>On infinite homoclinic orbits induced by unstable periodic orbits in the Lorenz system</title><title>Chaos (Woodbury, N.Y.)</title><description>In this paper, infinite homoclinic orbits existing in the Lorenz system are analytically presented. Such homoclinic orbits are induced by unstable periodic orbits on bifurcation trees through period-doubling cascades. Each unstable periodic orbit ends at its corresponding homoclinic orbit. Traditional computational methods cannot obtain homoclinic orbits from the corresponding unstable periodic orbits. This is because unstable periodic orbits in the Lorenz system cannot be achieved in numerical simulations. Herein, the stable and unstable periodic motions to chaos on the period-doubling cascaded bifurcation trees are determined through a discrete mapping method. The corresponding homoclinic orbits induced by the unstable periodic orbits are predicted analytically. A period-doubling bifurcation tree of period-1, period-2, and period-4 motions are generated as an example. The homoclinic orbits relative to unstable period-1, period-2, and period-4 motions are determined. Illustrations of homoclinic orbits and periodic orbits are given. This study presents how to determine infinite homoclinic orbits through unstable periodic orbits in three-dimensional or higher-dimensional nonlinear systems.</description><subject>Bifurcations</subject><subject>Lorenz system</subject><subject>Nonlinear systems</subject><subject>Orbits</subject><subject>Trees</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90F1LwzAUBuAgCs7phf8g4I0KnSdpT5pdyvALBrtRb0ubJiyjbWaSCvPX27GhouDVeeE8vBwOIecMJgxEeoMTgCxjgh2QEQM5TXIh-eE2Y5YwBDgmJyGsAIDxFEfkddFR2xnb2ajp0rVONUNW1PnKxjCs6l7pmlYb2nchllWj6Vp76-qfhsalpnPndfdBwyZE3Z6SI1M2QZ_t55i83N89zx6T-eLhaXY7T1QqICYItdSg0RiFVVorw1VWKyl4jgqlFKIqpzI3DNO05lCJimeZlgZkDhKVhHRMLne9a-_eeh1i0dqgdNOUnXZ9KDgiCI4c5UAvftGV6303XDcoyHOJqWSDutop5V0IXpti7W1b-k3BoNh-uMBi_-HBXu9sUDaW0bruC787_w2LdW3-w3-bPwFYNojd</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Guo, Siyu</creator><creator>Luo, Albert C. J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8208-6108</orcidid><orcidid>https://orcid.org/0000-0003-4377-6207</orcidid></search><sort><creationdate>202104</creationdate><title>On infinite homoclinic orbits induced by unstable periodic orbits in the Lorenz system</title><author>Guo, Siyu ; Luo, Albert C. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-50d8e0e5ffc5b3dcf2c4dc86275c58866ba987f1533d20b6b244e8f087085c803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bifurcations</topic><topic>Lorenz system</topic><topic>Nonlinear systems</topic><topic>Orbits</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Siyu</creatorcontrib><creatorcontrib>Luo, Albert C. J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Siyu</au><au>Luo, Albert C. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On infinite homoclinic orbits induced by unstable periodic orbits in the Lorenz system</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><date>2021-04</date><risdate>2021</risdate><volume>31</volume><issue>4</issue><spage>043106</spage><epage>043106</epage><pages>043106-043106</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>In this paper, infinite homoclinic orbits existing in the Lorenz system are analytically presented. Such homoclinic orbits are induced by unstable periodic orbits on bifurcation trees through period-doubling cascades. Each unstable periodic orbit ends at its corresponding homoclinic orbit. Traditional computational methods cannot obtain homoclinic orbits from the corresponding unstable periodic orbits. This is because unstable periodic orbits in the Lorenz system cannot be achieved in numerical simulations. Herein, the stable and unstable periodic motions to chaos on the period-doubling cascaded bifurcation trees are determined through a discrete mapping method. The corresponding homoclinic orbits induced by the unstable periodic orbits are predicted analytically. A period-doubling bifurcation tree of period-1, period-2, and period-4 motions are generated as an example. The homoclinic orbits relative to unstable period-1, period-2, and period-4 motions are determined. Illustrations of homoclinic orbits and periodic orbits are given. This study presents how to determine infinite homoclinic orbits through unstable periodic orbits in three-dimensional or higher-dimensional nonlinear systems.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0044161</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8208-6108</orcidid><orcidid>https://orcid.org/0000-0003-4377-6207</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2021-04, Vol.31 (4), p.043106-043106
issn 1054-1500
1089-7682
language eng
recordid cdi_scitation_primary_10_1063_5_0044161
source AIP Journals Complete; Alma/SFX Local Collection
subjects Bifurcations
Lorenz system
Nonlinear systems
Orbits
Trees
title On infinite homoclinic orbits induced by unstable periodic orbits in the Lorenz system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A50%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20infinite%20homoclinic%20orbits%20induced%20by%20unstable%20periodic%20orbits%20in%20the%20Lorenz%20system&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Guo,%20Siyu&rft.date=2021-04&rft.volume=31&rft.issue=4&rft.spage=043106&rft.epage=043106&rft.pages=043106-043106&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/5.0044161&rft_dat=%3Cproquest_scita%3E2550625258%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2507785381&rft_id=info:pmid/&rfr_iscdi=true