Revisiting the flat plate laminar boundary layer flow of viscoelastic FENE-P fluids
The laminar flat plate boundary-layer flow solution for finitely extensible nonlinear elastic model with Peterlin's closure fluids, originally derived by Olagunju [D. O. Olagunju, Appl. Math. Comput. 173, 593–602 (2006)], is revisited by relaxing some of the assumptions related to the conformat...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2021-02, Vol.33 (2), p.23103 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 23103 |
container_title | Physics of fluids (1994) |
container_volume | 33 |
creator | Parvar, S. da Silva, C. B. Pinho, F. T. |
description | The laminar flat plate boundary-layer flow solution for finitely extensible nonlinear elastic model with Peterlin's closure fluids, originally derived by Olagunju [D. O. Olagunju, Appl. Math. Comput. 173, 593–602 (2006)], is revisited by relaxing some of the assumptions related to the conformation tensor. The ensuing simplification through an order of magnitude analysis and the use of similarity-like variables allows for a semi-analytical approximate similarity solution to be obtained. The proposed solution is more accurate than the original solution, and it tends to self-similar behavior only in the limit of low elasticity. Additionally, we provide a more extensive set of results, including profiles of polymer conformation tensor components, laws of decay for peak stresses and their location, as well as the streamwise variations of boundary layer thickness, displacement and momentum thicknesses. We also provide asymptotic laws for these quantities under low elasticity flow conditions. Comparisons with results from the numerical solution of the full set of governing equations show the approximate similarity solution to be valid up to a high local Weissenberg number (
W
i
x) between 0.2 and 0.3, corresponding to a local Weissenberg number based on the boundary layer thickness of about 10, for a wide range of values of dumbbell extensibility and solvent viscosity ratio. Above this critical condition, the semi-analytical solution is unable to describe the complex variations of the conformation tensor within the boundary layer, but it still remains accurate in its description of the velocity profiles, friction coefficient, and the variations of displacement, momentum, and boundary layer thicknesses for Weissenberg numbers at least one order of magnitude higher (within 5% up to
W
i
x
≈
5). |
doi_str_mv | 10.1063/5.0042516 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0042516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493211126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-f7c843a27fb12d670bac3ed8e14d7441e75d999f8f59547ef247ccdb7d44c1e93</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsFYP_oOAJ4Wt-dpk9yilVaGo-HFesvnQlO1mTbKV_ntTWvQgeJkZZp55h3mz7BzBCYKMXBcTCCkuEDvIRgiWVc4ZY4fbmsOcMYKOs5MQlhBCUmE2yl6e9doGG233DuKHBqYVEfQpaNCKle2EB40bOiX8JjU22ifCfQFnQFqTTrciRCvBfPYwy5_SbLAqnGZHRrRBn-3zOHubz16nd_ni8fZ-erPIJcE85obLkhKBuWkQVozDRkiiVakRVZxSpHmhqqoypSmqgnJtMOVSqoYrSiXSFRlnFzvd3rvPQYdYL93gu3SyxrQiGCGEWaIud5T0LgSvTd17u0r_1AjWW8_qot57ltirHRukjSJa1_3Aa-d_wbpX5j_4r_I3HKZ59g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493211126</pqid></control><display><type>article</type><title>Revisiting the flat plate laminar boundary layer flow of viscoelastic FENE-P fluids</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Parvar, S. ; da Silva, C. B. ; Pinho, F. T.</creator><creatorcontrib>Parvar, S. ; da Silva, C. B. ; Pinho, F. T.</creatorcontrib><description>The laminar flat plate boundary-layer flow solution for finitely extensible nonlinear elastic model with Peterlin's closure fluids, originally derived by Olagunju [D. O. Olagunju, Appl. Math. Comput. 173, 593–602 (2006)], is revisited by relaxing some of the assumptions related to the conformation tensor. The ensuing simplification through an order of magnitude analysis and the use of similarity-like variables allows for a semi-analytical approximate similarity solution to be obtained. The proposed solution is more accurate than the original solution, and it tends to self-similar behavior only in the limit of low elasticity. Additionally, we provide a more extensive set of results, including profiles of polymer conformation tensor components, laws of decay for peak stresses and their location, as well as the streamwise variations of boundary layer thickness, displacement and momentum thicknesses. We also provide asymptotic laws for these quantities under low elasticity flow conditions. Comparisons with results from the numerical solution of the full set of governing equations show the approximate similarity solution to be valid up to a high local Weissenberg number (
W
i
x) between 0.2 and 0.3, corresponding to a local Weissenberg number based on the boundary layer thickness of about 10, for a wide range of values of dumbbell extensibility and solvent viscosity ratio. Above this critical condition, the semi-analytical solution is unable to describe the complex variations of the conformation tensor within the boundary layer, but it still remains accurate in its description of the velocity profiles, friction coefficient, and the variations of displacement, momentum, and boundary layer thicknesses for Weissenberg numbers at least one order of magnitude higher (within 5% up to
W
i
x
≈
5).</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0042516</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boundary layer flow ; Boundary layer thickness ; Coefficient of friction ; Computational fluid dynamics ; Elasticity ; Exact solutions ; Extensibility ; Flat plates ; Fluid dynamics ; Fluid flow ; Laminar boundary layer ; Laminar flow ; Momentum ; Physics ; Self-similarity ; Similarity solutions ; Tensors ; Velocity distribution ; Viscosity ratio</subject><ispartof>Physics of fluids (1994), 2021-02, Vol.33 (2), p.23103</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-f7c843a27fb12d670bac3ed8e14d7441e75d999f8f59547ef247ccdb7d44c1e93</citedby><cites>FETCH-LOGICAL-c327t-f7c843a27fb12d670bac3ed8e14d7441e75d999f8f59547ef247ccdb7d44c1e93</cites><orcidid>0000-0003-3074-3473 ; 0000-0002-6866-5469 ; 0000-0002-9576-4622</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Parvar, S.</creatorcontrib><creatorcontrib>da Silva, C. B.</creatorcontrib><creatorcontrib>Pinho, F. T.</creatorcontrib><title>Revisiting the flat plate laminar boundary layer flow of viscoelastic FENE-P fluids</title><title>Physics of fluids (1994)</title><description>The laminar flat plate boundary-layer flow solution for finitely extensible nonlinear elastic model with Peterlin's closure fluids, originally derived by Olagunju [D. O. Olagunju, Appl. Math. Comput. 173, 593–602 (2006)], is revisited by relaxing some of the assumptions related to the conformation tensor. The ensuing simplification through an order of magnitude analysis and the use of similarity-like variables allows for a semi-analytical approximate similarity solution to be obtained. The proposed solution is more accurate than the original solution, and it tends to self-similar behavior only in the limit of low elasticity. Additionally, we provide a more extensive set of results, including profiles of polymer conformation tensor components, laws of decay for peak stresses and their location, as well as the streamwise variations of boundary layer thickness, displacement and momentum thicknesses. We also provide asymptotic laws for these quantities under low elasticity flow conditions. Comparisons with results from the numerical solution of the full set of governing equations show the approximate similarity solution to be valid up to a high local Weissenberg number (
W
i
x) between 0.2 and 0.3, corresponding to a local Weissenberg number based on the boundary layer thickness of about 10, for a wide range of values of dumbbell extensibility and solvent viscosity ratio. Above this critical condition, the semi-analytical solution is unable to describe the complex variations of the conformation tensor within the boundary layer, but it still remains accurate in its description of the velocity profiles, friction coefficient, and the variations of displacement, momentum, and boundary layer thicknesses for Weissenberg numbers at least one order of magnitude higher (within 5% up to
W
i
x
≈
5).</description><subject>Boundary layer flow</subject><subject>Boundary layer thickness</subject><subject>Coefficient of friction</subject><subject>Computational fluid dynamics</subject><subject>Elasticity</subject><subject>Exact solutions</subject><subject>Extensibility</subject><subject>Flat plates</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Laminar boundary layer</subject><subject>Laminar flow</subject><subject>Momentum</subject><subject>Physics</subject><subject>Self-similarity</subject><subject>Similarity solutions</subject><subject>Tensors</subject><subject>Velocity distribution</subject><subject>Viscosity ratio</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhhdRsFYP_oOAJ4Wt-dpk9yilVaGo-HFesvnQlO1mTbKV_ntTWvQgeJkZZp55h3mz7BzBCYKMXBcTCCkuEDvIRgiWVc4ZY4fbmsOcMYKOs5MQlhBCUmE2yl6e9doGG233DuKHBqYVEfQpaNCKle2EB40bOiX8JjU22ifCfQFnQFqTTrciRCvBfPYwy5_SbLAqnGZHRrRBn-3zOHubz16nd_ni8fZ-erPIJcE85obLkhKBuWkQVozDRkiiVakRVZxSpHmhqqoypSmqgnJtMOVSqoYrSiXSFRlnFzvd3rvPQYdYL93gu3SyxrQiGCGEWaIud5T0LgSvTd17u0r_1AjWW8_qot57ltirHRukjSJa1_3Aa-d_wbpX5j_4r_I3HKZ59g</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Parvar, S.</creator><creator>da Silva, C. B.</creator><creator>Pinho, F. T.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3074-3473</orcidid><orcidid>https://orcid.org/0000-0002-6866-5469</orcidid><orcidid>https://orcid.org/0000-0002-9576-4622</orcidid></search><sort><creationdate>202102</creationdate><title>Revisiting the flat plate laminar boundary layer flow of viscoelastic FENE-P fluids</title><author>Parvar, S. ; da Silva, C. B. ; Pinho, F. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-f7c843a27fb12d670bac3ed8e14d7441e75d999f8f59547ef247ccdb7d44c1e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary layer flow</topic><topic>Boundary layer thickness</topic><topic>Coefficient of friction</topic><topic>Computational fluid dynamics</topic><topic>Elasticity</topic><topic>Exact solutions</topic><topic>Extensibility</topic><topic>Flat plates</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Laminar boundary layer</topic><topic>Laminar flow</topic><topic>Momentum</topic><topic>Physics</topic><topic>Self-similarity</topic><topic>Similarity solutions</topic><topic>Tensors</topic><topic>Velocity distribution</topic><topic>Viscosity ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parvar, S.</creatorcontrib><creatorcontrib>da Silva, C. B.</creatorcontrib><creatorcontrib>Pinho, F. T.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parvar, S.</au><au>da Silva, C. B.</au><au>Pinho, F. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting the flat plate laminar boundary layer flow of viscoelastic FENE-P fluids</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2021-02</date><risdate>2021</risdate><volume>33</volume><issue>2</issue><spage>23103</spage><pages>23103-</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The laminar flat plate boundary-layer flow solution for finitely extensible nonlinear elastic model with Peterlin's closure fluids, originally derived by Olagunju [D. O. Olagunju, Appl. Math. Comput. 173, 593–602 (2006)], is revisited by relaxing some of the assumptions related to the conformation tensor. The ensuing simplification through an order of magnitude analysis and the use of similarity-like variables allows for a semi-analytical approximate similarity solution to be obtained. The proposed solution is more accurate than the original solution, and it tends to self-similar behavior only in the limit of low elasticity. Additionally, we provide a more extensive set of results, including profiles of polymer conformation tensor components, laws of decay for peak stresses and their location, as well as the streamwise variations of boundary layer thickness, displacement and momentum thicknesses. We also provide asymptotic laws for these quantities under low elasticity flow conditions. Comparisons with results from the numerical solution of the full set of governing equations show the approximate similarity solution to be valid up to a high local Weissenberg number (
W
i
x) between 0.2 and 0.3, corresponding to a local Weissenberg number based on the boundary layer thickness of about 10, for a wide range of values of dumbbell extensibility and solvent viscosity ratio. Above this critical condition, the semi-analytical solution is unable to describe the complex variations of the conformation tensor within the boundary layer, but it still remains accurate in its description of the velocity profiles, friction coefficient, and the variations of displacement, momentum, and boundary layer thicknesses for Weissenberg numbers at least one order of magnitude higher (within 5% up to
W
i
x
≈
5).</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0042516</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-3074-3473</orcidid><orcidid>https://orcid.org/0000-0002-6866-5469</orcidid><orcidid>https://orcid.org/0000-0002-9576-4622</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2021-02, Vol.33 (2), p.23103 |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0042516 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Boundary layer flow Boundary layer thickness Coefficient of friction Computational fluid dynamics Elasticity Exact solutions Extensibility Flat plates Fluid dynamics Fluid flow Laminar boundary layer Laminar flow Momentum Physics Self-similarity Similarity solutions Tensors Velocity distribution Viscosity ratio |
title | Revisiting the flat plate laminar boundary layer flow of viscoelastic FENE-P fluids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A10%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20the%20flat%20plate%20laminar%20boundary%20layer%20flow%20of%20viscoelastic%20FENE-P%20fluids&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Parvar,%20S.&rft.date=2021-02&rft.volume=33&rft.issue=2&rft.spage=23103&rft.pages=23103-&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0042516&rft_dat=%3Cproquest_scita%3E2493211126%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493211126&rft_id=info:pmid/&rfr_iscdi=true |