Dynamical response of a rocking rigid block

This paper investigates the complex dynamical behavior of a rigid block structure under harmonic ground excitation, thereby mimicking, for instance, the oscillation of the system under seismic excitation or containers placed on a ship under periodic acting of sea waves. The equations of motion are d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2021-07, Vol.31 (7), p.073136-073136
Hauptverfasser: Liu, Y., Páez Chávez, J., Brzeski, P., Perlikowski, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 073136
container_issue 7
container_start_page 073136
container_title Chaos (Woodbury, N.Y.)
container_volume 31
creator Liu, Y.
Páez Chávez, J.
Brzeski, P.
Perlikowski, P.
description This paper investigates the complex dynamical behavior of a rigid block structure under harmonic ground excitation, thereby mimicking, for instance, the oscillation of the system under seismic excitation or containers placed on a ship under periodic acting of sea waves. The equations of motion are derived, assuming a large frictional coefficient at the interface between the block and the ground, in such a way that sliding cannot occur. In addition, the mathematical model assumes a loss of kinetic energy when an impact with the ground takes place. The resulting mathematical model is then formulated and studied in the framework of impulsive dynamical systems. Its complex dynamical response is studied in detail using two different approaches, based on direct numerical integration and path-following techniques, where the latter is implemented via the continuation platform COCO (Dankowicz and Schilder). Our study reveals the presence of various dynamical phenomena, such as branching points, fold and period-doubling bifurcation of limit cycles, symmetric and asymmetric periodic responses, and chaotic motions. By using the basin stability method, we also investigate the properties of solutions and their ranges of existence in phase and parameter spaces. Moreover, the study considers ground excitation conditions leading to the overturning of the block structure and shows parameter regions wherein such behavior can be avoided.
doi_str_mv 10.1063/5.0040962
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0040962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2553377008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-b10f2e05071e3d222592b7fe6766ff9570c10674cbc36835875822624c9b6cd53</originalsourceid><addsrcrecordid>eNqd0EtLxDAQB_AgCq6Pg9-g4MUHXSdJJ2mPsj5hwYueQ5smS9ZuU5OusN_eLLsgeBQGZgZ-DH-GkAsKUwqC3-EUoIBKsAMyoVBWuRQlO9zOWOQUAY7JSYxLAKCM44TcPmz6euV03WXBxMH30WTeZnUWvP50_SILbuHarOnSekaObN1Fc77vp-Tj6fF99pLP355fZ_fzXPMKx7yhYJkBBEkNbxljWLFGWiOkENZWKEGnqLLQjeai5FhKLBkTrNBVI3SL_JRc7e4OwX-tTRzVykVtuq7ujV9HxRAlFkWqRC__0KVfhz6l2yrOpQQok7reKR18jMFYNQS3qsNGUVDbtylU-7cle7OzUbuxHp3v_4e_ffiFamgt_wGJlXda</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553377008</pqid></control><display><type>article</type><title>Dynamical response of a rocking rigid block</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Liu, Y. ; Páez Chávez, J. ; Brzeski, P. ; Perlikowski, P.</creator><creatorcontrib>Liu, Y. ; Páez Chávez, J. ; Brzeski, P. ; Perlikowski, P.</creatorcontrib><description>This paper investigates the complex dynamical behavior of a rigid block structure under harmonic ground excitation, thereby mimicking, for instance, the oscillation of the system under seismic excitation or containers placed on a ship under periodic acting of sea waves. The equations of motion are derived, assuming a large frictional coefficient at the interface between the block and the ground, in such a way that sliding cannot occur. In addition, the mathematical model assumes a loss of kinetic energy when an impact with the ground takes place. The resulting mathematical model is then formulated and studied in the framework of impulsive dynamical systems. Its complex dynamical response is studied in detail using two different approaches, based on direct numerical integration and path-following techniques, where the latter is implemented via the continuation platform COCO (Dankowicz and Schilder). Our study reveals the presence of various dynamical phenomena, such as branching points, fold and period-doubling bifurcation of limit cycles, symmetric and asymmetric periodic responses, and chaotic motions. By using the basin stability method, we also investigate the properties of solutions and their ranges of existence in phase and parameter spaces. Moreover, the study considers ground excitation conditions leading to the overturning of the block structure and shows parameter regions wherein such behavior can be avoided.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/5.0040962</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Containers ; Equations of motion ; Kinetic energy ; Mathematical models ; Motion stability ; Numerical integration ; Parameters ; Rigid blocks ; Seismic response ; Seismic stability</subject><ispartof>Chaos (Woodbury, N.Y.), 2021-07, Vol.31 (7), p.073136-073136</ispartof><rights>Author(s)</rights><rights>2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-b10f2e05071e3d222592b7fe6766ff9570c10674cbc36835875822624c9b6cd53</citedby><cites>FETCH-LOGICAL-c395t-b10f2e05071e3d222592b7fe6766ff9570c10674cbc36835875822624c9b6cd53</cites><orcidid>0000-0003-3867-5137 ; 0000-0002-7322-9856 ; 0000-0003-0117-4451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Y.</creatorcontrib><creatorcontrib>Páez Chávez, J.</creatorcontrib><creatorcontrib>Brzeski, P.</creatorcontrib><creatorcontrib>Perlikowski, P.</creatorcontrib><title>Dynamical response of a rocking rigid block</title><title>Chaos (Woodbury, N.Y.)</title><description>This paper investigates the complex dynamical behavior of a rigid block structure under harmonic ground excitation, thereby mimicking, for instance, the oscillation of the system under seismic excitation or containers placed on a ship under periodic acting of sea waves. The equations of motion are derived, assuming a large frictional coefficient at the interface between the block and the ground, in such a way that sliding cannot occur. In addition, the mathematical model assumes a loss of kinetic energy when an impact with the ground takes place. The resulting mathematical model is then formulated and studied in the framework of impulsive dynamical systems. Its complex dynamical response is studied in detail using two different approaches, based on direct numerical integration and path-following techniques, where the latter is implemented via the continuation platform COCO (Dankowicz and Schilder). Our study reveals the presence of various dynamical phenomena, such as branching points, fold and period-doubling bifurcation of limit cycles, symmetric and asymmetric periodic responses, and chaotic motions. By using the basin stability method, we also investigate the properties of solutions and their ranges of existence in phase and parameter spaces. Moreover, the study considers ground excitation conditions leading to the overturning of the block structure and shows parameter regions wherein such behavior can be avoided.</description><subject>Containers</subject><subject>Equations of motion</subject><subject>Kinetic energy</subject><subject>Mathematical models</subject><subject>Motion stability</subject><subject>Numerical integration</subject><subject>Parameters</subject><subject>Rigid blocks</subject><subject>Seismic response</subject><subject>Seismic stability</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0EtLxDAQB_AgCq6Pg9-g4MUHXSdJJ2mPsj5hwYueQ5smS9ZuU5OusN_eLLsgeBQGZgZ-DH-GkAsKUwqC3-EUoIBKsAMyoVBWuRQlO9zOWOQUAY7JSYxLAKCM44TcPmz6euV03WXBxMH30WTeZnUWvP50_SILbuHarOnSekaObN1Fc77vp-Tj6fF99pLP355fZ_fzXPMKx7yhYJkBBEkNbxljWLFGWiOkENZWKEGnqLLQjeai5FhKLBkTrNBVI3SL_JRc7e4OwX-tTRzVykVtuq7ujV9HxRAlFkWqRC__0KVfhz6l2yrOpQQok7reKR18jMFYNQS3qsNGUVDbtylU-7cle7OzUbuxHp3v_4e_ffiFamgt_wGJlXda</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Liu, Y.</creator><creator>Páez Chávez, J.</creator><creator>Brzeski, P.</creator><creator>Perlikowski, P.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3867-5137</orcidid><orcidid>https://orcid.org/0000-0002-7322-9856</orcidid><orcidid>https://orcid.org/0000-0003-0117-4451</orcidid></search><sort><creationdate>202107</creationdate><title>Dynamical response of a rocking rigid block</title><author>Liu, Y. ; Páez Chávez, J. ; Brzeski, P. ; Perlikowski, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-b10f2e05071e3d222592b7fe6766ff9570c10674cbc36835875822624c9b6cd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Containers</topic><topic>Equations of motion</topic><topic>Kinetic energy</topic><topic>Mathematical models</topic><topic>Motion stability</topic><topic>Numerical integration</topic><topic>Parameters</topic><topic>Rigid blocks</topic><topic>Seismic response</topic><topic>Seismic stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Y.</creatorcontrib><creatorcontrib>Páez Chávez, J.</creatorcontrib><creatorcontrib>Brzeski, P.</creatorcontrib><creatorcontrib>Perlikowski, P.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Y.</au><au>Páez Chávez, J.</au><au>Brzeski, P.</au><au>Perlikowski, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical response of a rocking rigid block</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><date>2021-07</date><risdate>2021</risdate><volume>31</volume><issue>7</issue><spage>073136</spage><epage>073136</epage><pages>073136-073136</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>This paper investigates the complex dynamical behavior of a rigid block structure under harmonic ground excitation, thereby mimicking, for instance, the oscillation of the system under seismic excitation or containers placed on a ship under periodic acting of sea waves. The equations of motion are derived, assuming a large frictional coefficient at the interface between the block and the ground, in such a way that sliding cannot occur. In addition, the mathematical model assumes a loss of kinetic energy when an impact with the ground takes place. The resulting mathematical model is then formulated and studied in the framework of impulsive dynamical systems. Its complex dynamical response is studied in detail using two different approaches, based on direct numerical integration and path-following techniques, where the latter is implemented via the continuation platform COCO (Dankowicz and Schilder). Our study reveals the presence of various dynamical phenomena, such as branching points, fold and period-doubling bifurcation of limit cycles, symmetric and asymmetric periodic responses, and chaotic motions. By using the basin stability method, we also investigate the properties of solutions and their ranges of existence in phase and parameter spaces. Moreover, the study considers ground excitation conditions leading to the overturning of the block structure and shows parameter regions wherein such behavior can be avoided.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0040962</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3867-5137</orcidid><orcidid>https://orcid.org/0000-0002-7322-9856</orcidid><orcidid>https://orcid.org/0000-0003-0117-4451</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2021-07, Vol.31 (7), p.073136-073136
issn 1054-1500
1089-7682
language eng
recordid cdi_scitation_primary_10_1063_5_0040962
source AIP Journals Complete; Alma/SFX Local Collection
subjects Containers
Equations of motion
Kinetic energy
Mathematical models
Motion stability
Numerical integration
Parameters
Rigid blocks
Seismic response
Seismic stability
title Dynamical response of a rocking rigid block
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A35%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20response%20of%20a%20rocking%20rigid%20block&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Liu,%20Y.&rft.date=2021-07&rft.volume=31&rft.issue=7&rft.spage=073136&rft.epage=073136&rft.pages=073136-073136&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/5.0040962&rft_dat=%3Cproquest_scita%3E2553377008%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553377008&rft_id=info:pmid/&rfr_iscdi=true