Dynamical response of a rocking rigid block
This paper investigates the complex dynamical behavior of a rigid block structure under harmonic ground excitation, thereby mimicking, for instance, the oscillation of the system under seismic excitation or containers placed on a ship under periodic acting of sea waves. The equations of motion are d...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2021-07, Vol.31 (7), p.073136-073136 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 073136 |
---|---|
container_issue | 7 |
container_start_page | 073136 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 31 |
creator | Liu, Y. Páez Chávez, J. Brzeski, P. Perlikowski, P. |
description | This paper investigates the complex dynamical behavior of a rigid block structure under harmonic ground excitation, thereby mimicking, for instance, the oscillation of the system under seismic excitation or containers placed on a ship under periodic acting of sea waves. The equations of motion are derived, assuming a large frictional coefficient at the interface between the block and the ground, in such a way that sliding cannot occur. In addition, the mathematical model assumes a loss of kinetic energy when an impact with the ground takes place. The resulting mathematical model is then formulated and studied in the framework of impulsive dynamical systems. Its complex dynamical response is studied in detail using two different approaches, based on direct numerical integration and path-following techniques, where the latter is implemented via the continuation platform COCO (Dankowicz and Schilder). Our study reveals the presence of various dynamical phenomena, such as branching points, fold and period-doubling bifurcation of limit cycles, symmetric and asymmetric periodic responses, and chaotic motions. By using the basin stability method, we also investigate the properties of solutions and their ranges of existence in phase and parameter spaces. Moreover, the study considers ground excitation conditions leading to the overturning of the block structure and shows parameter regions wherein such behavior can be avoided. |
doi_str_mv | 10.1063/5.0040962 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0040962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2553377008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-b10f2e05071e3d222592b7fe6766ff9570c10674cbc36835875822624c9b6cd53</originalsourceid><addsrcrecordid>eNqd0EtLxDAQB_AgCq6Pg9-g4MUHXSdJJ2mPsj5hwYueQ5smS9ZuU5OusN_eLLsgeBQGZgZ-DH-GkAsKUwqC3-EUoIBKsAMyoVBWuRQlO9zOWOQUAY7JSYxLAKCM44TcPmz6euV03WXBxMH30WTeZnUWvP50_SILbuHarOnSekaObN1Fc77vp-Tj6fF99pLP355fZ_fzXPMKx7yhYJkBBEkNbxljWLFGWiOkENZWKEGnqLLQjeai5FhKLBkTrNBVI3SL_JRc7e4OwX-tTRzVykVtuq7ujV9HxRAlFkWqRC__0KVfhz6l2yrOpQQok7reKR18jMFYNQS3qsNGUVDbtylU-7cle7OzUbuxHp3v_4e_ffiFamgt_wGJlXda</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553377008</pqid></control><display><type>article</type><title>Dynamical response of a rocking rigid block</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Liu, Y. ; Páez Chávez, J. ; Brzeski, P. ; Perlikowski, P.</creator><creatorcontrib>Liu, Y. ; Páez Chávez, J. ; Brzeski, P. ; Perlikowski, P.</creatorcontrib><description>This paper investigates the complex dynamical behavior of a rigid block structure under harmonic ground excitation, thereby mimicking, for instance, the oscillation of the system under seismic excitation or containers placed on a ship under periodic acting of sea waves. The equations of motion are derived, assuming a large frictional coefficient at the interface between the block and the ground, in such a way that sliding cannot occur. In addition, the mathematical model assumes a loss of kinetic energy when an impact with the ground takes place. The resulting mathematical model is then formulated and studied in the framework of impulsive dynamical systems. Its complex dynamical response is studied in detail using two different approaches, based on direct numerical integration and path-following techniques, where the latter is implemented via the continuation platform COCO (Dankowicz and Schilder). Our study reveals the presence of various dynamical phenomena, such as branching points, fold and period-doubling bifurcation of limit cycles, symmetric and asymmetric periodic responses, and chaotic motions. By using the basin stability method, we also investigate the properties of solutions and their ranges of existence in phase and parameter spaces. Moreover, the study considers ground excitation conditions leading to the overturning of the block structure and shows parameter regions wherein such behavior can be avoided.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/5.0040962</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Containers ; Equations of motion ; Kinetic energy ; Mathematical models ; Motion stability ; Numerical integration ; Parameters ; Rigid blocks ; Seismic response ; Seismic stability</subject><ispartof>Chaos (Woodbury, N.Y.), 2021-07, Vol.31 (7), p.073136-073136</ispartof><rights>Author(s)</rights><rights>2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-b10f2e05071e3d222592b7fe6766ff9570c10674cbc36835875822624c9b6cd53</citedby><cites>FETCH-LOGICAL-c395t-b10f2e05071e3d222592b7fe6766ff9570c10674cbc36835875822624c9b6cd53</cites><orcidid>0000-0003-3867-5137 ; 0000-0002-7322-9856 ; 0000-0003-0117-4451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Y.</creatorcontrib><creatorcontrib>Páez Chávez, J.</creatorcontrib><creatorcontrib>Brzeski, P.</creatorcontrib><creatorcontrib>Perlikowski, P.</creatorcontrib><title>Dynamical response of a rocking rigid block</title><title>Chaos (Woodbury, N.Y.)</title><description>This paper investigates the complex dynamical behavior of a rigid block structure under harmonic ground excitation, thereby mimicking, for instance, the oscillation of the system under seismic excitation or containers placed on a ship under periodic acting of sea waves. The equations of motion are derived, assuming a large frictional coefficient at the interface between the block and the ground, in such a way that sliding cannot occur. In addition, the mathematical model assumes a loss of kinetic energy when an impact with the ground takes place. The resulting mathematical model is then formulated and studied in the framework of impulsive dynamical systems. Its complex dynamical response is studied in detail using two different approaches, based on direct numerical integration and path-following techniques, where the latter is implemented via the continuation platform COCO (Dankowicz and Schilder). Our study reveals the presence of various dynamical phenomena, such as branching points, fold and period-doubling bifurcation of limit cycles, symmetric and asymmetric periodic responses, and chaotic motions. By using the basin stability method, we also investigate the properties of solutions and their ranges of existence in phase and parameter spaces. Moreover, the study considers ground excitation conditions leading to the overturning of the block structure and shows parameter regions wherein such behavior can be avoided.</description><subject>Containers</subject><subject>Equations of motion</subject><subject>Kinetic energy</subject><subject>Mathematical models</subject><subject>Motion stability</subject><subject>Numerical integration</subject><subject>Parameters</subject><subject>Rigid blocks</subject><subject>Seismic response</subject><subject>Seismic stability</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0EtLxDAQB_AgCq6Pg9-g4MUHXSdJJ2mPsj5hwYueQ5smS9ZuU5OusN_eLLsgeBQGZgZ-DH-GkAsKUwqC3-EUoIBKsAMyoVBWuRQlO9zOWOQUAY7JSYxLAKCM44TcPmz6euV03WXBxMH30WTeZnUWvP50_SILbuHarOnSekaObN1Fc77vp-Tj6fF99pLP355fZ_fzXPMKx7yhYJkBBEkNbxljWLFGWiOkENZWKEGnqLLQjeai5FhKLBkTrNBVI3SL_JRc7e4OwX-tTRzVykVtuq7ujV9HxRAlFkWqRC__0KVfhz6l2yrOpQQok7reKR18jMFYNQS3qsNGUVDbtylU-7cle7OzUbuxHp3v_4e_ffiFamgt_wGJlXda</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Liu, Y.</creator><creator>Páez Chávez, J.</creator><creator>Brzeski, P.</creator><creator>Perlikowski, P.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3867-5137</orcidid><orcidid>https://orcid.org/0000-0002-7322-9856</orcidid><orcidid>https://orcid.org/0000-0003-0117-4451</orcidid></search><sort><creationdate>202107</creationdate><title>Dynamical response of a rocking rigid block</title><author>Liu, Y. ; Páez Chávez, J. ; Brzeski, P. ; Perlikowski, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-b10f2e05071e3d222592b7fe6766ff9570c10674cbc36835875822624c9b6cd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Containers</topic><topic>Equations of motion</topic><topic>Kinetic energy</topic><topic>Mathematical models</topic><topic>Motion stability</topic><topic>Numerical integration</topic><topic>Parameters</topic><topic>Rigid blocks</topic><topic>Seismic response</topic><topic>Seismic stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Y.</creatorcontrib><creatorcontrib>Páez Chávez, J.</creatorcontrib><creatorcontrib>Brzeski, P.</creatorcontrib><creatorcontrib>Perlikowski, P.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Y.</au><au>Páez Chávez, J.</au><au>Brzeski, P.</au><au>Perlikowski, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical response of a rocking rigid block</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><date>2021-07</date><risdate>2021</risdate><volume>31</volume><issue>7</issue><spage>073136</spage><epage>073136</epage><pages>073136-073136</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>This paper investigates the complex dynamical behavior of a rigid block structure under harmonic ground excitation, thereby mimicking, for instance, the oscillation of the system under seismic excitation or containers placed on a ship under periodic acting of sea waves. The equations of motion are derived, assuming a large frictional coefficient at the interface between the block and the ground, in such a way that sliding cannot occur. In addition, the mathematical model assumes a loss of kinetic energy when an impact with the ground takes place. The resulting mathematical model is then formulated and studied in the framework of impulsive dynamical systems. Its complex dynamical response is studied in detail using two different approaches, based on direct numerical integration and path-following techniques, where the latter is implemented via the continuation platform COCO (Dankowicz and Schilder). Our study reveals the presence of various dynamical phenomena, such as branching points, fold and period-doubling bifurcation of limit cycles, symmetric and asymmetric periodic responses, and chaotic motions. By using the basin stability method, we also investigate the properties of solutions and their ranges of existence in phase and parameter spaces. Moreover, the study considers ground excitation conditions leading to the overturning of the block structure and shows parameter regions wherein such behavior can be avoided.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0040962</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3867-5137</orcidid><orcidid>https://orcid.org/0000-0002-7322-9856</orcidid><orcidid>https://orcid.org/0000-0003-0117-4451</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2021-07, Vol.31 (7), p.073136-073136 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0040962 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Containers Equations of motion Kinetic energy Mathematical models Motion stability Numerical integration Parameters Rigid blocks Seismic response Seismic stability |
title | Dynamical response of a rocking rigid block |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A35%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20response%20of%20a%20rocking%20rigid%20block&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Liu,%20Y.&rft.date=2021-07&rft.volume=31&rft.issue=7&rft.spage=073136&rft.epage=073136&rft.pages=073136-073136&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/5.0040962&rft_dat=%3Cproquest_scita%3E2553377008%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553377008&rft_id=info:pmid/&rfr_iscdi=true |