Implicit large-eddy simulations of turbulent flow in a channel via spectral/hp element methods

The spectral/hp element method [which is the hp-version finite element method, where h denotes the h-version finite element method and p denotes the p-version finite element method (or the spectral element method) with elementwise expansion based on (modified) orthogonal polynomials up to pth-order...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2021-03, Vol.33 (3)
1. Verfasser: Sherwin, Spencer J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Physics of fluids (1994)
container_volume 33
creator Sherwin, Spencer J.
description The spectral/hp element method [which is the hp-version finite element method, where h denotes the h-version finite element method and p denotes the p-version finite element method (or the spectral element method) with elementwise expansion based on (modified) orthogonal polynomials up to pth-order in each element] together with the regularized spectral vanishing viscosity (SVV) is employed to perform implicit large eddy simulation (iLES) of the turbulent separated flows in a channel with streamwise periodic hill-shaped constriction. The simulations are conducted at a Reynolds number of 10 595 based on the hill height and the bulk velocity magnitude above the crest, where the standard benchmark was presented with abundant experimental and numerical data. The flow statistical properties are discussed in detail, including mean velocities, Reynolds stresses, anisotropy measures, and spectra, which are in good agreement with the available numerical and experimental data in the literature. It is demonstrated that the SVV-iLES model performs at least as well as the established explicit models and therefore, the high-order spectral/hp element method via the calibrated model-free iLES is well-prepared for highly resolved wall-bounded turbulent simulations with large-scale separations and certainly for industrial complex flows.
doi_str_mv 10.1063/5.0040845
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0040845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2499554536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-e309afb212a56130d9990f6d5bddf471f820a59c3f2d804a900e5ff221abac0b3</originalsourceid><addsrcrecordid>eNqd0M9LwzAUwPEgCs4fB_-DgCeFbi9NkzVHGf4YDLzo1ZA2ietIm5qkk_33dm7g3dN7hw_vwRehGwJTApzO2BSggLJgJ2hCoBTZnHN-ut_nkHFOyTm6iHEDAFTkfII-lm3vmrpJ2KnwaTKj9Q7Hph2cSo3vIvYWpyFUgzNdwtb5b9x0WOF6rbrOOLxtFI69qVNQbrbusXGm3cvWpLXX8QqdWeWiuT7OS_T-9Pi2eMlWr8_LxcMqq6mgKTMUhLJVTnLFOKGghRBguWaV1raYE1vmoJioqc11CYUSAIZZm-dEVaqGil6i28PdPvivwcQkN34I3fhS5oUQjBWM8lHdHVQdfIzBWNmHplVhJwnIfT7J5DHfaO8PNo5xflv8D299-IOy15b-AMJyfp8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499554536</pqid></control><display><type>article</type><title>Implicit large-eddy simulations of turbulent flow in a channel via spectral/hp element methods</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Sherwin, Spencer J.</creator><creatorcontrib>Sherwin, Spencer J.</creatorcontrib><description>The spectral/hp element method [which is the hp-version finite element method, where h denotes the h-version finite element method and p denotes the p-version finite element method (or the spectral element method) with elementwise expansion based on (modified) orthogonal polynomials up to pth-order in each element] together with the regularized spectral vanishing viscosity (SVV) is employed to perform implicit large eddy simulation (iLES) of the turbulent separated flows in a channel with streamwise periodic hill-shaped constriction. The simulations are conducted at a Reynolds number of 10 595 based on the hill height and the bulk velocity magnitude above the crest, where the standard benchmark was presented with abundant experimental and numerical data. The flow statistical properties are discussed in detail, including mean velocities, Reynolds stresses, anisotropy measures, and spectra, which are in good agreement with the available numerical and experimental data in the literature. It is demonstrated that the SVV-iLES model performs at least as well as the established explicit models and therefore, the high-order spectral/hp element method via the calibrated model-free iLES is well-prepared for highly resolved wall-bounded turbulent simulations with large-scale separations and certainly for industrial complex flows.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0040845</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anisotropy ; Computational fluid dynamics ; Finite element analysis ; Finite element method ; Flow separation ; Fluid dynamics ; Fluid flow ; Large eddy simulation ; Mathematical analysis ; Mathematical models ; Physics ; Polynomials ; Reynolds number ; Simulation ; Spectra ; Spectral element method ; Turbulent flow ; Vortices</subject><ispartof>Physics of fluids (1994), 2021-03, Vol.33 (3)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-e309afb212a56130d9990f6d5bddf471f820a59c3f2d804a900e5ff221abac0b3</citedby><cites>FETCH-LOGICAL-c393t-e309afb212a56130d9990f6d5bddf471f820a59c3f2d804a900e5ff221abac0b3</cites><orcidid>0000-0001-7681-2820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,791,4498,27905,27906</link.rule.ids></links><search><creatorcontrib>Sherwin, Spencer J.</creatorcontrib><title>Implicit large-eddy simulations of turbulent flow in a channel via spectral/hp element methods</title><title>Physics of fluids (1994)</title><description>The spectral/hp element method [which is the hp-version finite element method, where h denotes the h-version finite element method and p denotes the p-version finite element method (or the spectral element method) with elementwise expansion based on (modified) orthogonal polynomials up to pth-order in each element] together with the regularized spectral vanishing viscosity (SVV) is employed to perform implicit large eddy simulation (iLES) of the turbulent separated flows in a channel with streamwise periodic hill-shaped constriction. The simulations are conducted at a Reynolds number of 10 595 based on the hill height and the bulk velocity magnitude above the crest, where the standard benchmark was presented with abundant experimental and numerical data. The flow statistical properties are discussed in detail, including mean velocities, Reynolds stresses, anisotropy measures, and spectra, which are in good agreement with the available numerical and experimental data in the literature. It is demonstrated that the SVV-iLES model performs at least as well as the established explicit models and therefore, the high-order spectral/hp element method via the calibrated model-free iLES is well-prepared for highly resolved wall-bounded turbulent simulations with large-scale separations and certainly for industrial complex flows.</description><subject>Anisotropy</subject><subject>Computational fluid dynamics</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Flow separation</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Large eddy simulation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Polynomials</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Spectra</subject><subject>Spectral element method</subject><subject>Turbulent flow</subject><subject>Vortices</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0M9LwzAUwPEgCs4fB_-DgCeFbi9NkzVHGf4YDLzo1ZA2ietIm5qkk_33dm7g3dN7hw_vwRehGwJTApzO2BSggLJgJ2hCoBTZnHN-ut_nkHFOyTm6iHEDAFTkfII-lm3vmrpJ2KnwaTKj9Q7Hph2cSo3vIvYWpyFUgzNdwtb5b9x0WOF6rbrOOLxtFI69qVNQbrbusXGm3cvWpLXX8QqdWeWiuT7OS_T-9Pi2eMlWr8_LxcMqq6mgKTMUhLJVTnLFOKGghRBguWaV1raYE1vmoJioqc11CYUSAIZZm-dEVaqGil6i28PdPvivwcQkN34I3fhS5oUQjBWM8lHdHVQdfIzBWNmHplVhJwnIfT7J5DHfaO8PNo5xflv8D299-IOy15b-AMJyfp8</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Sherwin, Spencer J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7681-2820</orcidid></search><sort><creationdate>20210301</creationdate><title>Implicit large-eddy simulations of turbulent flow in a channel via spectral/hp element methods</title><author>Sherwin, Spencer J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-e309afb212a56130d9990f6d5bddf471f820a59c3f2d804a900e5ff221abac0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropy</topic><topic>Computational fluid dynamics</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Flow separation</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Large eddy simulation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Polynomials</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Spectra</topic><topic>Spectral element method</topic><topic>Turbulent flow</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sherwin, Spencer J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sherwin, Spencer J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implicit large-eddy simulations of turbulent flow in a channel via spectral/hp element methods</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>33</volume><issue>3</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The spectral/hp element method [which is the hp-version finite element method, where h denotes the h-version finite element method and p denotes the p-version finite element method (or the spectral element method) with elementwise expansion based on (modified) orthogonal polynomials up to pth-order in each element] together with the regularized spectral vanishing viscosity (SVV) is employed to perform implicit large eddy simulation (iLES) of the turbulent separated flows in a channel with streamwise periodic hill-shaped constriction. The simulations are conducted at a Reynolds number of 10 595 based on the hill height and the bulk velocity magnitude above the crest, where the standard benchmark was presented with abundant experimental and numerical data. The flow statistical properties are discussed in detail, including mean velocities, Reynolds stresses, anisotropy measures, and spectra, which are in good agreement with the available numerical and experimental data in the literature. It is demonstrated that the SVV-iLES model performs at least as well as the established explicit models and therefore, the high-order spectral/hp element method via the calibrated model-free iLES is well-prepared for highly resolved wall-bounded turbulent simulations with large-scale separations and certainly for industrial complex flows.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0040845</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7681-2820</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2021-03, Vol.33 (3)
issn 1070-6631
1089-7666
language eng
recordid cdi_scitation_primary_10_1063_5_0040845
source AIP Journals Complete; Alma/SFX Local Collection
subjects Anisotropy
Computational fluid dynamics
Finite element analysis
Finite element method
Flow separation
Fluid dynamics
Fluid flow
Large eddy simulation
Mathematical analysis
Mathematical models
Physics
Polynomials
Reynolds number
Simulation
Spectra
Spectral element method
Turbulent flow
Vortices
title Implicit large-eddy simulations of turbulent flow in a channel via spectral/hp element methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A54%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implicit%20large-eddy%20simulations%20of%20turbulent%20flow%20in%20a%20channel%20via%20spectral/hp%20element%20methods&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Sherwin,%20Spencer%20J.&rft.date=2021-03-01&rft.volume=33&rft.issue=3&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0040845&rft_dat=%3Cproquest_scita%3E2499554536%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2499554536&rft_id=info:pmid/&rfr_iscdi=true