Nano-thermoelectric infrared bolometers
Infrared (IR) radiation detectors are used in numerous applications from thermal imaging to spectroscopic gas sensing. Obtaining high speed and sensitivity, low-power operation, and cost-effectiveness with a single technology remains to be a challenge in the field of IR sensors. By combining nano-th...
Gespeichert in:
Veröffentlicht in: | APL photonics 2021-03, Vol.6 (3), p.036111-036111-11 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 036111-11 |
---|---|
container_issue | 3 |
container_start_page | 036111 |
container_title | APL photonics |
container_volume | 6 |
creator | Varpula, Aapo Tappura, Kirsi Tiira, Jonna Grigoras, Kestutis Kilpi, Olli-Pekka Sovanto, Kuura Ahopelto, Jouni Prunnila, Mika |
description | Infrared (IR) radiation detectors are used in numerous applications from thermal imaging to spectroscopic gas sensing. Obtaining high speed and sensitivity, low-power operation, and cost-effectiveness with a single technology remains to be a challenge in the field of IR sensors. By combining nano-thermoelectric transduction and nanomembrane photonic absorbers, we demonstrate uncooled IR bolometer technology that is material-compatible with large-scale CMOS fabrication and provides fast and high sensitivity response to long-wavelength IR (LWIR) around 10 µm. The fast operation speed stems from the low heat capacity metal layer grid absorber connecting the sub-100 nm-thick n- and p-type Si nano-thermoelectric support beams, which convert the radiation induced temperature rise into voltage. The nano-thermoelectric transducer-support approach benefits from enhanced phonon surface scattering in the beams, leading to reduction in thermal conductivity, which enhances the sensitivity. We demonstrate different size nano-thermoelectric bolometric photodetector pixels with LWIR responsitivities, specific detectivities, and time constants in the ranges 179 V/W–2930 V/W, 1.5 × 107 cm Hz1/2/W–3.1 × 108 cm Hz1/2/W, and 66 µs–3600 µs, respectively. We benchmark the technology against different LWIR detector solutions and show how nano-thermoelectric detector technology can reach the fundamental sensitivity limits posed by phonon and photon thermal fluctuation noise. |
doi_str_mv | 10.1063/5.0040534 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0040534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_25a9065e47be441aac3cbaeffa7b48ed</doaj_id><sourcerecordid>app</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-47c21207c97e5d72edad1174e83491b472c9b0bef0728465e3ad8afac23d65073</originalsourceid><addsrcrecordid>eNqdkEtLAzEUhYMoWGoX_oPuRGHqzWsys5Tio1B0o-twk9xoyrQpmUHw31ttUdeuzuHw8S0OY-ccZhxqea1nAAq0VEdsJKRpKmhrc_ynn7JJ368AgNeGt0qP2MUjbnI1vFFZZ-rIDyX5adrEgoXC1OUur2mg0p-xk4hdT5NDjtnL3e3z_KFaPt0v5jfLyiuAoVLGCy7A-NaQDkZQwMC5UdRI1XKnjPCtA0cRjGhUrUliaDCiFzLUGowcs8XeGzKu7LakNZYPmzHZ7yGXV4tlSL4jKzS2sFMo40gpjuild0gxonGqobBzXe5dvuS-LxR_fBzs12FW28NhO_Zqz_Y-DTikvPkf_J7LL2i3IcpPH8t4cQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nano-thermoelectric infrared bolometers</title><source>Electronic Journals Library</source><source>Directory of Open Access Journals</source><creator>Varpula, Aapo ; Tappura, Kirsi ; Tiira, Jonna ; Grigoras, Kestutis ; Kilpi, Olli-Pekka ; Sovanto, Kuura ; Ahopelto, Jouni ; Prunnila, Mika</creator><creatorcontrib>Varpula, Aapo ; Tappura, Kirsi ; Tiira, Jonna ; Grigoras, Kestutis ; Kilpi, Olli-Pekka ; Sovanto, Kuura ; Ahopelto, Jouni ; Prunnila, Mika</creatorcontrib><description>Infrared (IR) radiation detectors are used in numerous applications from thermal imaging to spectroscopic gas sensing. Obtaining high speed and sensitivity, low-power operation, and cost-effectiveness with a single technology remains to be a challenge in the field of IR sensors. By combining nano-thermoelectric transduction and nanomembrane photonic absorbers, we demonstrate uncooled IR bolometer technology that is material-compatible with large-scale CMOS fabrication and provides fast and high sensitivity response to long-wavelength IR (LWIR) around 10 µm. The fast operation speed stems from the low heat capacity metal layer grid absorber connecting the sub-100 nm-thick n- and p-type Si nano-thermoelectric support beams, which convert the radiation induced temperature rise into voltage. The nano-thermoelectric transducer-support approach benefits from enhanced phonon surface scattering in the beams, leading to reduction in thermal conductivity, which enhances the sensitivity. We demonstrate different size nano-thermoelectric bolometric photodetector pixels with LWIR responsitivities, specific detectivities, and time constants in the ranges 179 V/W–2930 V/W, 1.5 × 107 cm Hz1/2/W–3.1 × 108 cm Hz1/2/W, and 66 µs–3600 µs, respectively. We benchmark the technology against different LWIR detector solutions and show how nano-thermoelectric detector technology can reach the fundamental sensitivity limits posed by phonon and photon thermal fluctuation noise.</description><identifier>ISSN: 2378-0967</identifier><identifier>EISSN: 2378-0967</identifier><identifier>DOI: 10.1063/5.0040534</identifier><identifier>CODEN: APPHD2</identifier><language>eng</language><publisher>AIP Publishing LLC</publisher><ispartof>APL photonics, 2021-03, Vol.6 (3), p.036111-036111-11</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-47c21207c97e5d72edad1174e83491b472c9b0bef0728465e3ad8afac23d65073</citedby><cites>FETCH-LOGICAL-c400t-47c21207c97e5d72edad1174e83491b472c9b0bef0728465e3ad8afac23d65073</cites><orcidid>0000-0002-8032-9652 ; 0000-0001-6592-240X ; 0000-0003-3372-6097 ; 0000-0002-5345-1660</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27901,27902</link.rule.ids></links><search><creatorcontrib>Varpula, Aapo</creatorcontrib><creatorcontrib>Tappura, Kirsi</creatorcontrib><creatorcontrib>Tiira, Jonna</creatorcontrib><creatorcontrib>Grigoras, Kestutis</creatorcontrib><creatorcontrib>Kilpi, Olli-Pekka</creatorcontrib><creatorcontrib>Sovanto, Kuura</creatorcontrib><creatorcontrib>Ahopelto, Jouni</creatorcontrib><creatorcontrib>Prunnila, Mika</creatorcontrib><title>Nano-thermoelectric infrared bolometers</title><title>APL photonics</title><description>Infrared (IR) radiation detectors are used in numerous applications from thermal imaging to spectroscopic gas sensing. Obtaining high speed and sensitivity, low-power operation, and cost-effectiveness with a single technology remains to be a challenge in the field of IR sensors. By combining nano-thermoelectric transduction and nanomembrane photonic absorbers, we demonstrate uncooled IR bolometer technology that is material-compatible with large-scale CMOS fabrication and provides fast and high sensitivity response to long-wavelength IR (LWIR) around 10 µm. The fast operation speed stems from the low heat capacity metal layer grid absorber connecting the sub-100 nm-thick n- and p-type Si nano-thermoelectric support beams, which convert the radiation induced temperature rise into voltage. The nano-thermoelectric transducer-support approach benefits from enhanced phonon surface scattering in the beams, leading to reduction in thermal conductivity, which enhances the sensitivity. We demonstrate different size nano-thermoelectric bolometric photodetector pixels with LWIR responsitivities, specific detectivities, and time constants in the ranges 179 V/W–2930 V/W, 1.5 × 107 cm Hz1/2/W–3.1 × 108 cm Hz1/2/W, and 66 µs–3600 µs, respectively. We benchmark the technology against different LWIR detector solutions and show how nano-thermoelectric detector technology can reach the fundamental sensitivity limits posed by phonon and photon thermal fluctuation noise.</description><issn>2378-0967</issn><issn>2378-0967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqdkEtLAzEUhYMoWGoX_oPuRGHqzWsys5Tio1B0o-twk9xoyrQpmUHw31ttUdeuzuHw8S0OY-ccZhxqea1nAAq0VEdsJKRpKmhrc_ynn7JJ368AgNeGt0qP2MUjbnI1vFFZZ-rIDyX5adrEgoXC1OUur2mg0p-xk4hdT5NDjtnL3e3z_KFaPt0v5jfLyiuAoVLGCy7A-NaQDkZQwMC5UdRI1XKnjPCtA0cRjGhUrUliaDCiFzLUGowcs8XeGzKu7LakNZYPmzHZ7yGXV4tlSL4jKzS2sFMo40gpjuild0gxonGqobBzXe5dvuS-LxR_fBzs12FW28NhO_Zqz_Y-DTikvPkf_J7LL2i3IcpPH8t4cQ</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Varpula, Aapo</creator><creator>Tappura, Kirsi</creator><creator>Tiira, Jonna</creator><creator>Grigoras, Kestutis</creator><creator>Kilpi, Olli-Pekka</creator><creator>Sovanto, Kuura</creator><creator>Ahopelto, Jouni</creator><creator>Prunnila, Mika</creator><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8032-9652</orcidid><orcidid>https://orcid.org/0000-0001-6592-240X</orcidid><orcidid>https://orcid.org/0000-0003-3372-6097</orcidid><orcidid>https://orcid.org/0000-0002-5345-1660</orcidid></search><sort><creationdate>20210301</creationdate><title>Nano-thermoelectric infrared bolometers</title><author>Varpula, Aapo ; Tappura, Kirsi ; Tiira, Jonna ; Grigoras, Kestutis ; Kilpi, Olli-Pekka ; Sovanto, Kuura ; Ahopelto, Jouni ; Prunnila, Mika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-47c21207c97e5d72edad1174e83491b472c9b0bef0728465e3ad8afac23d65073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varpula, Aapo</creatorcontrib><creatorcontrib>Tappura, Kirsi</creatorcontrib><creatorcontrib>Tiira, Jonna</creatorcontrib><creatorcontrib>Grigoras, Kestutis</creatorcontrib><creatorcontrib>Kilpi, Olli-Pekka</creatorcontrib><creatorcontrib>Sovanto, Kuura</creatorcontrib><creatorcontrib>Ahopelto, Jouni</creatorcontrib><creatorcontrib>Prunnila, Mika</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>APL photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Varpula, Aapo</au><au>Tappura, Kirsi</au><au>Tiira, Jonna</au><au>Grigoras, Kestutis</au><au>Kilpi, Olli-Pekka</au><au>Sovanto, Kuura</au><au>Ahopelto, Jouni</au><au>Prunnila, Mika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nano-thermoelectric infrared bolometers</atitle><jtitle>APL photonics</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>6</volume><issue>3</issue><spage>036111</spage><epage>036111-11</epage><pages>036111-036111-11</pages><issn>2378-0967</issn><eissn>2378-0967</eissn><coden>APPHD2</coden><abstract>Infrared (IR) radiation detectors are used in numerous applications from thermal imaging to spectroscopic gas sensing. Obtaining high speed and sensitivity, low-power operation, and cost-effectiveness with a single technology remains to be a challenge in the field of IR sensors. By combining nano-thermoelectric transduction and nanomembrane photonic absorbers, we demonstrate uncooled IR bolometer technology that is material-compatible with large-scale CMOS fabrication and provides fast and high sensitivity response to long-wavelength IR (LWIR) around 10 µm. The fast operation speed stems from the low heat capacity metal layer grid absorber connecting the sub-100 nm-thick n- and p-type Si nano-thermoelectric support beams, which convert the radiation induced temperature rise into voltage. The nano-thermoelectric transducer-support approach benefits from enhanced phonon surface scattering in the beams, leading to reduction in thermal conductivity, which enhances the sensitivity. We demonstrate different size nano-thermoelectric bolometric photodetector pixels with LWIR responsitivities, specific detectivities, and time constants in the ranges 179 V/W–2930 V/W, 1.5 × 107 cm Hz1/2/W–3.1 × 108 cm Hz1/2/W, and 66 µs–3600 µs, respectively. We benchmark the technology against different LWIR detector solutions and show how nano-thermoelectric detector technology can reach the fundamental sensitivity limits posed by phonon and photon thermal fluctuation noise.</abstract><pub>AIP Publishing LLC</pub><doi>10.1063/5.0040534</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8032-9652</orcidid><orcidid>https://orcid.org/0000-0001-6592-240X</orcidid><orcidid>https://orcid.org/0000-0003-3372-6097</orcidid><orcidid>https://orcid.org/0000-0002-5345-1660</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2378-0967 |
ispartof | APL photonics, 2021-03, Vol.6 (3), p.036111-036111-11 |
issn | 2378-0967 2378-0967 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0040534 |
source | Electronic Journals Library; Directory of Open Access Journals |
title | Nano-thermoelectric infrared bolometers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A44%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nano-thermoelectric%20infrared%20bolometers&rft.jtitle=APL%20photonics&rft.au=Varpula,%20Aapo&rft.date=2021-03-01&rft.volume=6&rft.issue=3&rft.spage=036111&rft.epage=036111-11&rft.pages=036111-036111-11&rft.issn=2378-0967&rft.eissn=2378-0967&rft.coden=APPHD2&rft_id=info:doi/10.1063/5.0040534&rft_dat=%3Cscitation_cross%3Eapp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_25a9065e47be441aac3cbaeffa7b48ed&rfr_iscdi=true |