3D printing of hollow fiber nanothermites with cavity-mediated self-accelerating combustion
Advanced techniques, such as 3D printing, have been developed for the design and fabrication of unique structures to meet user-customized requirements. However, the traditional 3D printing technique has not been used for the construction of the nanothermite hollow structure, hindering the developmen...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2021-03, Vol.129 (10) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 129 |
creator | Zhong, Lin Mao, Yaofeng Zhou, Xu Zheng, Dawei Guo, Changping Wang, Ruihao Zhang, Xingquan Gao, Bing Wang, Dunju |
description | Advanced techniques, such as 3D printing, have been developed for the design and fabrication of unique structures to meet user-customized requirements. However, the traditional 3D printing technique has not been used for the construction of the nanothermite hollow structure, hindering the development of 3D printing and the further applications of nanothermite materials. Recently, we discovered an unexpected self-accelerating combustion phenomenon of hollow fiber nanothermite (Al/CuO/fluororubber ternary composite). The results show that the stable flame propagation rate of the nanothermite hollow fiber significantly improved compared to the solid fiber from 0.09 to 395 m/s (up to 4400 times higher than the solid fiber), and the combustion test also exhibits the self-accelerating propagation of combustion by the “cavity-mediated effect.” With the versatile shape-design capability, this work on hollow structure nanothermite and developmental potential of 3D printing could lead to structural applications of microrockets, aerospace propulsion components, space exploration, microelectromechanical system (MEMS) devices, and high temperature destruction of MEMS. |
doi_str_mv | 10.1063/5.0039604 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0039604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2500122430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-59359bcf8165ba2c412ab6511094e2e45fd394f633d01385a8d34512bc42e27a3</originalsourceid><addsrcrecordid>eNqd0EtLAzEUBeAgCtbqwn8QcKUw9eY1M1lKfULBja5chEwmsSnTSU1SS_-9U1tw7-puPs7lHIQuCUwIlOxWTACYLIEfoRGBWhaVEHCMRgCUFLWs5Ck6S2kBQEjN5Ah9sHu8ir7Pvv_EweF56Lqwwc43NuJe9yHPbVz6bBPe-DzHRn_7vC2WtvU62xYn27lCG2M7G_VviAnLZp2yD_05OnG6S_bicMfo_fHhbfpczF6fXqZ3s8IwWuVCSCZkY1xNStFoajihuikFISC5pZYL1zLJXclYC4TVQtct44LQxnBqaaXZGF3tc1cxfK1tymoR1rEfXioqhqaUcgaDut4rE0NK0To19F7quFUE1G47JdRhu8He7G0yPutdl__h7xD_oFq1jv0AjUl8vg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2500122430</pqid></control><display><type>article</type><title>3D printing of hollow fiber nanothermites with cavity-mediated self-accelerating combustion</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Zhong, Lin ; Mao, Yaofeng ; Zhou, Xu ; Zheng, Dawei ; Guo, Changping ; Wang, Ruihao ; Zhang, Xingquan ; Gao, Bing ; Wang, Dunju</creator><creatorcontrib>Zhong, Lin ; Mao, Yaofeng ; Zhou, Xu ; Zheng, Dawei ; Guo, Changping ; Wang, Ruihao ; Zhang, Xingquan ; Gao, Bing ; Wang, Dunju</creatorcontrib><description>Advanced techniques, such as 3D printing, have been developed for the design and fabrication of unique structures to meet user-customized requirements. However, the traditional 3D printing technique has not been used for the construction of the nanothermite hollow structure, hindering the development of 3D printing and the further applications of nanothermite materials. Recently, we discovered an unexpected self-accelerating combustion phenomenon of hollow fiber nanothermite (Al/CuO/fluororubber ternary composite). The results show that the stable flame propagation rate of the nanothermite hollow fiber significantly improved compared to the solid fiber from 0.09 to 395 m/s (up to 4400 times higher than the solid fiber), and the combustion test also exhibits the self-accelerating propagation of combustion by the “cavity-mediated effect.” With the versatile shape-design capability, this work on hollow structure nanothermite and developmental potential of 3D printing could lead to structural applications of microrockets, aerospace propulsion components, space exploration, microelectromechanical system (MEMS) devices, and high temperature destruction of MEMS.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0039604</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>3-D printers ; Applied physics ; Combustion ; Flame propagation ; High temperature ; Microelectromechanical systems ; Shape effects ; Space exploration ; Three dimensional printing</subject><ispartof>Journal of applied physics, 2021-03, Vol.129 (10)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-59359bcf8165ba2c412ab6511094e2e45fd394f633d01385a8d34512bc42e27a3</citedby><cites>FETCH-LOGICAL-c327t-59359bcf8165ba2c412ab6511094e2e45fd394f633d01385a8d34512bc42e27a3</cites><orcidid>0000-0002-1511-8103</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0039604$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Zhong, Lin</creatorcontrib><creatorcontrib>Mao, Yaofeng</creatorcontrib><creatorcontrib>Zhou, Xu</creatorcontrib><creatorcontrib>Zheng, Dawei</creatorcontrib><creatorcontrib>Guo, Changping</creatorcontrib><creatorcontrib>Wang, Ruihao</creatorcontrib><creatorcontrib>Zhang, Xingquan</creatorcontrib><creatorcontrib>Gao, Bing</creatorcontrib><creatorcontrib>Wang, Dunju</creatorcontrib><title>3D printing of hollow fiber nanothermites with cavity-mediated self-accelerating combustion</title><title>Journal of applied physics</title><description>Advanced techniques, such as 3D printing, have been developed for the design and fabrication of unique structures to meet user-customized requirements. However, the traditional 3D printing technique has not been used for the construction of the nanothermite hollow structure, hindering the development of 3D printing and the further applications of nanothermite materials. Recently, we discovered an unexpected self-accelerating combustion phenomenon of hollow fiber nanothermite (Al/CuO/fluororubber ternary composite). The results show that the stable flame propagation rate of the nanothermite hollow fiber significantly improved compared to the solid fiber from 0.09 to 395 m/s (up to 4400 times higher than the solid fiber), and the combustion test also exhibits the self-accelerating propagation of combustion by the “cavity-mediated effect.” With the versatile shape-design capability, this work on hollow structure nanothermite and developmental potential of 3D printing could lead to structural applications of microrockets, aerospace propulsion components, space exploration, microelectromechanical system (MEMS) devices, and high temperature destruction of MEMS.</description><subject>3-D printers</subject><subject>Applied physics</subject><subject>Combustion</subject><subject>Flame propagation</subject><subject>High temperature</subject><subject>Microelectromechanical systems</subject><subject>Shape effects</subject><subject>Space exploration</subject><subject>Three dimensional printing</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0EtLAzEUBeAgCtbqwn8QcKUw9eY1M1lKfULBja5chEwmsSnTSU1SS_-9U1tw7-puPs7lHIQuCUwIlOxWTACYLIEfoRGBWhaVEHCMRgCUFLWs5Ck6S2kBQEjN5Ah9sHu8ir7Pvv_EweF56Lqwwc43NuJe9yHPbVz6bBPe-DzHRn_7vC2WtvU62xYn27lCG2M7G_VviAnLZp2yD_05OnG6S_bicMfo_fHhbfpczF6fXqZ3s8IwWuVCSCZkY1xNStFoajihuikFISC5pZYL1zLJXclYC4TVQtct44LQxnBqaaXZGF3tc1cxfK1tymoR1rEfXioqhqaUcgaDut4rE0NK0To19F7quFUE1G47JdRhu8He7G0yPutdl__h7xD_oFq1jv0AjUl8vg</recordid><startdate>20210314</startdate><enddate>20210314</enddate><creator>Zhong, Lin</creator><creator>Mao, Yaofeng</creator><creator>Zhou, Xu</creator><creator>Zheng, Dawei</creator><creator>Guo, Changping</creator><creator>Wang, Ruihao</creator><creator>Zhang, Xingquan</creator><creator>Gao, Bing</creator><creator>Wang, Dunju</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1511-8103</orcidid></search><sort><creationdate>20210314</creationdate><title>3D printing of hollow fiber nanothermites with cavity-mediated self-accelerating combustion</title><author>Zhong, Lin ; Mao, Yaofeng ; Zhou, Xu ; Zheng, Dawei ; Guo, Changping ; Wang, Ruihao ; Zhang, Xingquan ; Gao, Bing ; Wang, Dunju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-59359bcf8165ba2c412ab6511094e2e45fd394f633d01385a8d34512bc42e27a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3-D printers</topic><topic>Applied physics</topic><topic>Combustion</topic><topic>Flame propagation</topic><topic>High temperature</topic><topic>Microelectromechanical systems</topic><topic>Shape effects</topic><topic>Space exploration</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Lin</creatorcontrib><creatorcontrib>Mao, Yaofeng</creatorcontrib><creatorcontrib>Zhou, Xu</creatorcontrib><creatorcontrib>Zheng, Dawei</creatorcontrib><creatorcontrib>Guo, Changping</creatorcontrib><creatorcontrib>Wang, Ruihao</creatorcontrib><creatorcontrib>Zhang, Xingquan</creatorcontrib><creatorcontrib>Gao, Bing</creatorcontrib><creatorcontrib>Wang, Dunju</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Lin</au><au>Mao, Yaofeng</au><au>Zhou, Xu</au><au>Zheng, Dawei</au><au>Guo, Changping</au><au>Wang, Ruihao</au><au>Zhang, Xingquan</au><au>Gao, Bing</au><au>Wang, Dunju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D printing of hollow fiber nanothermites with cavity-mediated self-accelerating combustion</atitle><jtitle>Journal of applied physics</jtitle><date>2021-03-14</date><risdate>2021</risdate><volume>129</volume><issue>10</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Advanced techniques, such as 3D printing, have been developed for the design and fabrication of unique structures to meet user-customized requirements. However, the traditional 3D printing technique has not been used for the construction of the nanothermite hollow structure, hindering the development of 3D printing and the further applications of nanothermite materials. Recently, we discovered an unexpected self-accelerating combustion phenomenon of hollow fiber nanothermite (Al/CuO/fluororubber ternary composite). The results show that the stable flame propagation rate of the nanothermite hollow fiber significantly improved compared to the solid fiber from 0.09 to 395 m/s (up to 4400 times higher than the solid fiber), and the combustion test also exhibits the self-accelerating propagation of combustion by the “cavity-mediated effect.” With the versatile shape-design capability, this work on hollow structure nanothermite and developmental potential of 3D printing could lead to structural applications of microrockets, aerospace propulsion components, space exploration, microelectromechanical system (MEMS) devices, and high temperature destruction of MEMS.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0039604</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1511-8103</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2021-03, Vol.129 (10) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0039604 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | 3-D printers Applied physics Combustion Flame propagation High temperature Microelectromechanical systems Shape effects Space exploration Three dimensional printing |
title | 3D printing of hollow fiber nanothermites with cavity-mediated self-accelerating combustion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A31%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20printing%20of%20hollow%20fiber%20nanothermites%20with%20cavity-mediated%20self-accelerating%20combustion&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Zhong,%20Lin&rft.date=2021-03-14&rft.volume=129&rft.issue=10&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0039604&rft_dat=%3Cproquest_scita%3E2500122430%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2500122430&rft_id=info:pmid/&rfr_iscdi=true |