3D printing of hollow fiber nanothermites with cavity-mediated self-accelerating combustion

Advanced techniques, such as 3D printing, have been developed for the design and fabrication of unique structures to meet user-customized requirements. However, the traditional 3D printing technique has not been used for the construction of the nanothermite hollow structure, hindering the developmen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2021-03, Vol.129 (10)
Hauptverfasser: Zhong, Lin, Mao, Yaofeng, Zhou, Xu, Zheng, Dawei, Guo, Changping, Wang, Ruihao, Zhang, Xingquan, Gao, Bing, Wang, Dunju
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Journal of applied physics
container_volume 129
creator Zhong, Lin
Mao, Yaofeng
Zhou, Xu
Zheng, Dawei
Guo, Changping
Wang, Ruihao
Zhang, Xingquan
Gao, Bing
Wang, Dunju
description Advanced techniques, such as 3D printing, have been developed for the design and fabrication of unique structures to meet user-customized requirements. However, the traditional 3D printing technique has not been used for the construction of the nanothermite hollow structure, hindering the development of 3D printing and the further applications of nanothermite materials. Recently, we discovered an unexpected self-accelerating combustion phenomenon of hollow fiber nanothermite (Al/CuO/fluororubber ternary composite). The results show that the stable flame propagation rate of the nanothermite hollow fiber significantly improved compared to the solid fiber from 0.09 to 395 m/s (up to 4400 times higher than the solid fiber), and the combustion test also exhibits the self-accelerating propagation of combustion by the “cavity-mediated effect.” With the versatile shape-design capability, this work on hollow structure nanothermite and developmental potential of 3D printing could lead to structural applications of microrockets, aerospace propulsion components, space exploration, microelectromechanical system (MEMS) devices, and high temperature destruction of MEMS.
doi_str_mv 10.1063/5.0039604
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0039604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2500122430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-59359bcf8165ba2c412ab6511094e2e45fd394f633d01385a8d34512bc42e27a3</originalsourceid><addsrcrecordid>eNqd0EtLAzEUBeAgCtbqwn8QcKUw9eY1M1lKfULBja5chEwmsSnTSU1SS_-9U1tw7-puPs7lHIQuCUwIlOxWTACYLIEfoRGBWhaVEHCMRgCUFLWs5Ck6S2kBQEjN5Ah9sHu8ir7Pvv_EweF56Lqwwc43NuJe9yHPbVz6bBPe-DzHRn_7vC2WtvU62xYn27lCG2M7G_VviAnLZp2yD_05OnG6S_bicMfo_fHhbfpczF6fXqZ3s8IwWuVCSCZkY1xNStFoajihuikFISC5pZYL1zLJXclYC4TVQtct44LQxnBqaaXZGF3tc1cxfK1tymoR1rEfXioqhqaUcgaDut4rE0NK0To19F7quFUE1G47JdRhu8He7G0yPutdl__h7xD_oFq1jv0AjUl8vg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2500122430</pqid></control><display><type>article</type><title>3D printing of hollow fiber nanothermites with cavity-mediated self-accelerating combustion</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Zhong, Lin ; Mao, Yaofeng ; Zhou, Xu ; Zheng, Dawei ; Guo, Changping ; Wang, Ruihao ; Zhang, Xingquan ; Gao, Bing ; Wang, Dunju</creator><creatorcontrib>Zhong, Lin ; Mao, Yaofeng ; Zhou, Xu ; Zheng, Dawei ; Guo, Changping ; Wang, Ruihao ; Zhang, Xingquan ; Gao, Bing ; Wang, Dunju</creatorcontrib><description>Advanced techniques, such as 3D printing, have been developed for the design and fabrication of unique structures to meet user-customized requirements. However, the traditional 3D printing technique has not been used for the construction of the nanothermite hollow structure, hindering the development of 3D printing and the further applications of nanothermite materials. Recently, we discovered an unexpected self-accelerating combustion phenomenon of hollow fiber nanothermite (Al/CuO/fluororubber ternary composite). The results show that the stable flame propagation rate of the nanothermite hollow fiber significantly improved compared to the solid fiber from 0.09 to 395 m/s (up to 4400 times higher than the solid fiber), and the combustion test also exhibits the self-accelerating propagation of combustion by the “cavity-mediated effect.” With the versatile shape-design capability, this work on hollow structure nanothermite and developmental potential of 3D printing could lead to structural applications of microrockets, aerospace propulsion components, space exploration, microelectromechanical system (MEMS) devices, and high temperature destruction of MEMS.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0039604</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>3-D printers ; Applied physics ; Combustion ; Flame propagation ; High temperature ; Microelectromechanical systems ; Shape effects ; Space exploration ; Three dimensional printing</subject><ispartof>Journal of applied physics, 2021-03, Vol.129 (10)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-59359bcf8165ba2c412ab6511094e2e45fd394f633d01385a8d34512bc42e27a3</citedby><cites>FETCH-LOGICAL-c327t-59359bcf8165ba2c412ab6511094e2e45fd394f633d01385a8d34512bc42e27a3</cites><orcidid>0000-0002-1511-8103</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0039604$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Zhong, Lin</creatorcontrib><creatorcontrib>Mao, Yaofeng</creatorcontrib><creatorcontrib>Zhou, Xu</creatorcontrib><creatorcontrib>Zheng, Dawei</creatorcontrib><creatorcontrib>Guo, Changping</creatorcontrib><creatorcontrib>Wang, Ruihao</creatorcontrib><creatorcontrib>Zhang, Xingquan</creatorcontrib><creatorcontrib>Gao, Bing</creatorcontrib><creatorcontrib>Wang, Dunju</creatorcontrib><title>3D printing of hollow fiber nanothermites with cavity-mediated self-accelerating combustion</title><title>Journal of applied physics</title><description>Advanced techniques, such as 3D printing, have been developed for the design and fabrication of unique structures to meet user-customized requirements. However, the traditional 3D printing technique has not been used for the construction of the nanothermite hollow structure, hindering the development of 3D printing and the further applications of nanothermite materials. Recently, we discovered an unexpected self-accelerating combustion phenomenon of hollow fiber nanothermite (Al/CuO/fluororubber ternary composite). The results show that the stable flame propagation rate of the nanothermite hollow fiber significantly improved compared to the solid fiber from 0.09 to 395 m/s (up to 4400 times higher than the solid fiber), and the combustion test also exhibits the self-accelerating propagation of combustion by the “cavity-mediated effect.” With the versatile shape-design capability, this work on hollow structure nanothermite and developmental potential of 3D printing could lead to structural applications of microrockets, aerospace propulsion components, space exploration, microelectromechanical system (MEMS) devices, and high temperature destruction of MEMS.</description><subject>3-D printers</subject><subject>Applied physics</subject><subject>Combustion</subject><subject>Flame propagation</subject><subject>High temperature</subject><subject>Microelectromechanical systems</subject><subject>Shape effects</subject><subject>Space exploration</subject><subject>Three dimensional printing</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0EtLAzEUBeAgCtbqwn8QcKUw9eY1M1lKfULBja5chEwmsSnTSU1SS_-9U1tw7-puPs7lHIQuCUwIlOxWTACYLIEfoRGBWhaVEHCMRgCUFLWs5Ck6S2kBQEjN5Ah9sHu8ir7Pvv_EweF56Lqwwc43NuJe9yHPbVz6bBPe-DzHRn_7vC2WtvU62xYn27lCG2M7G_VviAnLZp2yD_05OnG6S_bicMfo_fHhbfpczF6fXqZ3s8IwWuVCSCZkY1xNStFoajihuikFISC5pZYL1zLJXclYC4TVQtct44LQxnBqaaXZGF3tc1cxfK1tymoR1rEfXioqhqaUcgaDut4rE0NK0To19F7quFUE1G47JdRhu8He7G0yPutdl__h7xD_oFq1jv0AjUl8vg</recordid><startdate>20210314</startdate><enddate>20210314</enddate><creator>Zhong, Lin</creator><creator>Mao, Yaofeng</creator><creator>Zhou, Xu</creator><creator>Zheng, Dawei</creator><creator>Guo, Changping</creator><creator>Wang, Ruihao</creator><creator>Zhang, Xingquan</creator><creator>Gao, Bing</creator><creator>Wang, Dunju</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1511-8103</orcidid></search><sort><creationdate>20210314</creationdate><title>3D printing of hollow fiber nanothermites with cavity-mediated self-accelerating combustion</title><author>Zhong, Lin ; Mao, Yaofeng ; Zhou, Xu ; Zheng, Dawei ; Guo, Changping ; Wang, Ruihao ; Zhang, Xingquan ; Gao, Bing ; Wang, Dunju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-59359bcf8165ba2c412ab6511094e2e45fd394f633d01385a8d34512bc42e27a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3-D printers</topic><topic>Applied physics</topic><topic>Combustion</topic><topic>Flame propagation</topic><topic>High temperature</topic><topic>Microelectromechanical systems</topic><topic>Shape effects</topic><topic>Space exploration</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Lin</creatorcontrib><creatorcontrib>Mao, Yaofeng</creatorcontrib><creatorcontrib>Zhou, Xu</creatorcontrib><creatorcontrib>Zheng, Dawei</creatorcontrib><creatorcontrib>Guo, Changping</creatorcontrib><creatorcontrib>Wang, Ruihao</creatorcontrib><creatorcontrib>Zhang, Xingquan</creatorcontrib><creatorcontrib>Gao, Bing</creatorcontrib><creatorcontrib>Wang, Dunju</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Lin</au><au>Mao, Yaofeng</au><au>Zhou, Xu</au><au>Zheng, Dawei</au><au>Guo, Changping</au><au>Wang, Ruihao</au><au>Zhang, Xingquan</au><au>Gao, Bing</au><au>Wang, Dunju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D printing of hollow fiber nanothermites with cavity-mediated self-accelerating combustion</atitle><jtitle>Journal of applied physics</jtitle><date>2021-03-14</date><risdate>2021</risdate><volume>129</volume><issue>10</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Advanced techniques, such as 3D printing, have been developed for the design and fabrication of unique structures to meet user-customized requirements. However, the traditional 3D printing technique has not been used for the construction of the nanothermite hollow structure, hindering the development of 3D printing and the further applications of nanothermite materials. Recently, we discovered an unexpected self-accelerating combustion phenomenon of hollow fiber nanothermite (Al/CuO/fluororubber ternary composite). The results show that the stable flame propagation rate of the nanothermite hollow fiber significantly improved compared to the solid fiber from 0.09 to 395 m/s (up to 4400 times higher than the solid fiber), and the combustion test also exhibits the self-accelerating propagation of combustion by the “cavity-mediated effect.” With the versatile shape-design capability, this work on hollow structure nanothermite and developmental potential of 3D printing could lead to structural applications of microrockets, aerospace propulsion components, space exploration, microelectromechanical system (MEMS) devices, and high temperature destruction of MEMS.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0039604</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1511-8103</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2021-03, Vol.129 (10)
issn 0021-8979
1089-7550
language eng
recordid cdi_scitation_primary_10_1063_5_0039604
source AIP Journals Complete; Alma/SFX Local Collection
subjects 3-D printers
Applied physics
Combustion
Flame propagation
High temperature
Microelectromechanical systems
Shape effects
Space exploration
Three dimensional printing
title 3D printing of hollow fiber nanothermites with cavity-mediated self-accelerating combustion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A31%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20printing%20of%20hollow%20fiber%20nanothermites%20with%20cavity-mediated%20self-accelerating%20combustion&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Zhong,%20Lin&rft.date=2021-03-14&rft.volume=129&rft.issue=10&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0039604&rft_dat=%3Cproquest_scita%3E2500122430%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2500122430&rft_id=info:pmid/&rfr_iscdi=true