Quantum gravitational wave function for the interior of a black hole and the generalized uncertainty principle

We investigate the internal structures of a Schwarzschild black hole by solving the Wheeler-DeWitt equation. The generic bounded wave function has a bouncing point around r ≃ M, where M is the black hole mass. Due to this quantum bouncing, there appears an ambiguity to define the arrow of time. If w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Yeom, Dong-han
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2319
creator Yeom, Dong-han
description We investigate the internal structures of a Schwarzschild black hole by solving the Wheeler-DeWitt equation. The generic bounded wave function has a bouncing point around r ≃ M, where M is the black hole mass. Due to this quantum bouncing, there appears an ambiguity to define the arrow of time. If we introduce two arrows of time, one can then interpret that two classical spacetime is annihilated around the bouncing point. Finally, we provide a conceptual explanation based on the generalized uncertainty principle.
doi_str_mv 10.1063/5.0038344
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0038344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2486609609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-fc2ca82e4b7be6f3364e44cafe3d97af7f9fea4d483d8301f7d47c09fca934b53</originalsourceid><addsrcrecordid>eNotkF9LwzAUxYMoWKcPfoOAb0Jn0qRN-yjDfzAQQcG3cJvebJ1dOtN0Mj-9mRtcuBz4ncs9h5BrzqacFeIunzImSiHlCUl4nvNUFbw4JQljlUwzKT7PycUwrBjLKqXKhLi3EVwY13ThYdsGCG3voKM_sEVqR2f2mtre07BE2rqAvo2itxRo3YH5osu-Qwqu-QcW6NBD1_5iQ6MZfYDo2dGNb51pNx1ekjML3YBXxz0hH48P77PndP769DK7n6cmy8uQWpMZKDOUtaqxsEIUEqU0YFE0lQKrbGURZCNL0ZSCcasaqQyrrIFKyDoXE3JzuLvx_feIQ9CrfvQx2aAzWRYFq-JE6vZADeYYXcdP1-B3mjO971Pn-tin-AMi3moy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2486609609</pqid></control><display><type>conference_proceeding</type><title>Quantum gravitational wave function for the interior of a black hole and the generalized uncertainty principle</title><source>AIP Journals Complete</source><creator>Yeom, Dong-han</creator><contributor>Shukor, Roslan Abdul ; Tanaka, Kazuhiro ; Ratnavelu, Kuru ; Yokoyama, Jun’ichi ; Tou, Teck-Yong ; Choi, Hyoung Joon ; Chin, Jia Hou ; Matsumoto, Ryoji ; Chin, Oi-Hoong</contributor><creatorcontrib>Yeom, Dong-han ; Shukor, Roslan Abdul ; Tanaka, Kazuhiro ; Ratnavelu, Kuru ; Yokoyama, Jun’ichi ; Tou, Teck-Yong ; Choi, Hyoung Joon ; Chin, Jia Hou ; Matsumoto, Ryoji ; Chin, Oi-Hoong</creatorcontrib><description>We investigate the internal structures of a Schwarzschild black hole by solving the Wheeler-DeWitt equation. The generic bounded wave function has a bouncing point around r ≃ M, where M is the black hole mass. Due to this quantum bouncing, there appears an ambiguity to define the arrow of time. If we introduce two arrows of time, one can then interpret that two classical spacetime is annihilated around the bouncing point. Finally, we provide a conceptual explanation based on the generalized uncertainty principle.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0038344</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Black holes ; Bouncing ; Gravitational waves ; Uncertainty principles ; Wave functions</subject><ispartof>AIP conference proceedings, 2021, Vol.2319 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-fc2ca82e4b7be6f3364e44cafe3d97af7f9fea4d483d8301f7d47c09fca934b53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0038344$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,778,782,787,788,792,4500,23913,23914,25123,27907,27908,76135</link.rule.ids></links><search><contributor>Shukor, Roslan Abdul</contributor><contributor>Tanaka, Kazuhiro</contributor><contributor>Ratnavelu, Kuru</contributor><contributor>Yokoyama, Jun’ichi</contributor><contributor>Tou, Teck-Yong</contributor><contributor>Choi, Hyoung Joon</contributor><contributor>Chin, Jia Hou</contributor><contributor>Matsumoto, Ryoji</contributor><contributor>Chin, Oi-Hoong</contributor><creatorcontrib>Yeom, Dong-han</creatorcontrib><title>Quantum gravitational wave function for the interior of a black hole and the generalized uncertainty principle</title><title>AIP conference proceedings</title><description>We investigate the internal structures of a Schwarzschild black hole by solving the Wheeler-DeWitt equation. The generic bounded wave function has a bouncing point around r ≃ M, where M is the black hole mass. Due to this quantum bouncing, there appears an ambiguity to define the arrow of time. If we introduce two arrows of time, one can then interpret that two classical spacetime is annihilated around the bouncing point. Finally, we provide a conceptual explanation based on the generalized uncertainty principle.</description><subject>Black holes</subject><subject>Bouncing</subject><subject>Gravitational waves</subject><subject>Uncertainty principles</subject><subject>Wave functions</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkF9LwzAUxYMoWKcPfoOAb0Jn0qRN-yjDfzAQQcG3cJvebJ1dOtN0Mj-9mRtcuBz4ncs9h5BrzqacFeIunzImSiHlCUl4nvNUFbw4JQljlUwzKT7PycUwrBjLKqXKhLi3EVwY13ThYdsGCG3voKM_sEVqR2f2mtre07BE2rqAvo2itxRo3YH5osu-Qwqu-QcW6NBD1_5iQ6MZfYDo2dGNb51pNx1ekjML3YBXxz0hH48P77PndP769DK7n6cmy8uQWpMZKDOUtaqxsEIUEqU0YFE0lQKrbGURZCNL0ZSCcasaqQyrrIFKyDoXE3JzuLvx_feIQ9CrfvQx2aAzWRYFq-JE6vZADeYYXcdP1-B3mjO971Pn-tin-AMi3moy</recordid><startdate>20210205</startdate><enddate>20210205</enddate><creator>Yeom, Dong-han</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210205</creationdate><title>Quantum gravitational wave function for the interior of a black hole and the generalized uncertainty principle</title><author>Yeom, Dong-han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-fc2ca82e4b7be6f3364e44cafe3d97af7f9fea4d483d8301f7d47c09fca934b53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Black holes</topic><topic>Bouncing</topic><topic>Gravitational waves</topic><topic>Uncertainty principles</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yeom, Dong-han</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yeom, Dong-han</au><au>Shukor, Roslan Abdul</au><au>Tanaka, Kazuhiro</au><au>Ratnavelu, Kuru</au><au>Yokoyama, Jun’ichi</au><au>Tou, Teck-Yong</au><au>Choi, Hyoung Joon</au><au>Chin, Jia Hou</au><au>Matsumoto, Ryoji</au><au>Chin, Oi-Hoong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Quantum gravitational wave function for the interior of a black hole and the generalized uncertainty principle</atitle><btitle>AIP conference proceedings</btitle><date>2021-02-05</date><risdate>2021</risdate><volume>2319</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>We investigate the internal structures of a Schwarzschild black hole by solving the Wheeler-DeWitt equation. The generic bounded wave function has a bouncing point around r ≃ M, where M is the black hole mass. Due to this quantum bouncing, there appears an ambiguity to define the arrow of time. If we introduce two arrows of time, one can then interpret that two classical spacetime is annihilated around the bouncing point. Finally, we provide a conceptual explanation based on the generalized uncertainty principle.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0038344</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2021, Vol.2319 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0038344
source AIP Journals Complete
subjects Black holes
Bouncing
Gravitational waves
Uncertainty principles
Wave functions
title Quantum gravitational wave function for the interior of a black hole and the generalized uncertainty principle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A43%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Quantum%20gravitational%20wave%20function%20for%20the%20interior%20of%20a%20black%20hole%20and%20the%20generalized%20uncertainty%20principle&rft.btitle=AIP%20conference%20proceedings&rft.au=Yeom,%20Dong-han&rft.date=2021-02-05&rft.volume=2319&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0038344&rft_dat=%3Cproquest_scita%3E2486609609%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486609609&rft_id=info:pmid/&rfr_iscdi=true