Quantum gravitational wave function for the interior of a black hole and the generalized uncertainty principle
We investigate the internal structures of a Schwarzschild black hole by solving the Wheeler-DeWitt equation. The generic bounded wave function has a bouncing point around r ≃ M, where M is the black hole mass. Due to this quantum bouncing, there appears an ambiguity to define the arrow of time. If w...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2319 |
creator | Yeom, Dong-han |
description | We investigate the internal structures of a Schwarzschild black hole by solving the Wheeler-DeWitt equation. The generic bounded wave function has a bouncing point around r ≃ M, where M is the black hole mass. Due to this quantum bouncing, there appears an ambiguity to define the arrow of time. If we introduce two arrows of time, one can then interpret that two classical spacetime is annihilated around the bouncing point. Finally, we provide a conceptual explanation based on the generalized uncertainty principle. |
doi_str_mv | 10.1063/5.0038344 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0038344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2486609609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-fc2ca82e4b7be6f3364e44cafe3d97af7f9fea4d483d8301f7d47c09fca934b53</originalsourceid><addsrcrecordid>eNotkF9LwzAUxYMoWKcPfoOAb0Jn0qRN-yjDfzAQQcG3cJvebJ1dOtN0Mj-9mRtcuBz4ncs9h5BrzqacFeIunzImSiHlCUl4nvNUFbw4JQljlUwzKT7PycUwrBjLKqXKhLi3EVwY13ThYdsGCG3voKM_sEVqR2f2mtre07BE2rqAvo2itxRo3YH5osu-Qwqu-QcW6NBD1_5iQ6MZfYDo2dGNb51pNx1ekjML3YBXxz0hH48P77PndP769DK7n6cmy8uQWpMZKDOUtaqxsEIUEqU0YFE0lQKrbGURZCNL0ZSCcasaqQyrrIFKyDoXE3JzuLvx_feIQ9CrfvQx2aAzWRYFq-JE6vZADeYYXcdP1-B3mjO971Pn-tin-AMi3moy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2486609609</pqid></control><display><type>conference_proceeding</type><title>Quantum gravitational wave function for the interior of a black hole and the generalized uncertainty principle</title><source>AIP Journals Complete</source><creator>Yeom, Dong-han</creator><contributor>Shukor, Roslan Abdul ; Tanaka, Kazuhiro ; Ratnavelu, Kuru ; Yokoyama, Jun’ichi ; Tou, Teck-Yong ; Choi, Hyoung Joon ; Chin, Jia Hou ; Matsumoto, Ryoji ; Chin, Oi-Hoong</contributor><creatorcontrib>Yeom, Dong-han ; Shukor, Roslan Abdul ; Tanaka, Kazuhiro ; Ratnavelu, Kuru ; Yokoyama, Jun’ichi ; Tou, Teck-Yong ; Choi, Hyoung Joon ; Chin, Jia Hou ; Matsumoto, Ryoji ; Chin, Oi-Hoong</creatorcontrib><description>We investigate the internal structures of a Schwarzschild black hole by solving the Wheeler-DeWitt equation. The generic bounded wave function has a bouncing point around r ≃ M, where M is the black hole mass. Due to this quantum bouncing, there appears an ambiguity to define the arrow of time. If we introduce two arrows of time, one can then interpret that two classical spacetime is annihilated around the bouncing point. Finally, we provide a conceptual explanation based on the generalized uncertainty principle.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0038344</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Black holes ; Bouncing ; Gravitational waves ; Uncertainty principles ; Wave functions</subject><ispartof>AIP conference proceedings, 2021, Vol.2319 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-fc2ca82e4b7be6f3364e44cafe3d97af7f9fea4d483d8301f7d47c09fca934b53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0038344$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,778,782,787,788,792,4500,23913,23914,25123,27907,27908,76135</link.rule.ids></links><search><contributor>Shukor, Roslan Abdul</contributor><contributor>Tanaka, Kazuhiro</contributor><contributor>Ratnavelu, Kuru</contributor><contributor>Yokoyama, Jun’ichi</contributor><contributor>Tou, Teck-Yong</contributor><contributor>Choi, Hyoung Joon</contributor><contributor>Chin, Jia Hou</contributor><contributor>Matsumoto, Ryoji</contributor><contributor>Chin, Oi-Hoong</contributor><creatorcontrib>Yeom, Dong-han</creatorcontrib><title>Quantum gravitational wave function for the interior of a black hole and the generalized uncertainty principle</title><title>AIP conference proceedings</title><description>We investigate the internal structures of a Schwarzschild black hole by solving the Wheeler-DeWitt equation. The generic bounded wave function has a bouncing point around r ≃ M, where M is the black hole mass. Due to this quantum bouncing, there appears an ambiguity to define the arrow of time. If we introduce two arrows of time, one can then interpret that two classical spacetime is annihilated around the bouncing point. Finally, we provide a conceptual explanation based on the generalized uncertainty principle.</description><subject>Black holes</subject><subject>Bouncing</subject><subject>Gravitational waves</subject><subject>Uncertainty principles</subject><subject>Wave functions</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkF9LwzAUxYMoWKcPfoOAb0Jn0qRN-yjDfzAQQcG3cJvebJ1dOtN0Mj-9mRtcuBz4ncs9h5BrzqacFeIunzImSiHlCUl4nvNUFbw4JQljlUwzKT7PycUwrBjLKqXKhLi3EVwY13ThYdsGCG3voKM_sEVqR2f2mtre07BE2rqAvo2itxRo3YH5osu-Qwqu-QcW6NBD1_5iQ6MZfYDo2dGNb51pNx1ekjML3YBXxz0hH48P77PndP769DK7n6cmy8uQWpMZKDOUtaqxsEIUEqU0YFE0lQKrbGURZCNL0ZSCcasaqQyrrIFKyDoXE3JzuLvx_feIQ9CrfvQx2aAzWRYFq-JE6vZADeYYXcdP1-B3mjO971Pn-tin-AMi3moy</recordid><startdate>20210205</startdate><enddate>20210205</enddate><creator>Yeom, Dong-han</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210205</creationdate><title>Quantum gravitational wave function for the interior of a black hole and the generalized uncertainty principle</title><author>Yeom, Dong-han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-fc2ca82e4b7be6f3364e44cafe3d97af7f9fea4d483d8301f7d47c09fca934b53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Black holes</topic><topic>Bouncing</topic><topic>Gravitational waves</topic><topic>Uncertainty principles</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yeom, Dong-han</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yeom, Dong-han</au><au>Shukor, Roslan Abdul</au><au>Tanaka, Kazuhiro</au><au>Ratnavelu, Kuru</au><au>Yokoyama, Jun’ichi</au><au>Tou, Teck-Yong</au><au>Choi, Hyoung Joon</au><au>Chin, Jia Hou</au><au>Matsumoto, Ryoji</au><au>Chin, Oi-Hoong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Quantum gravitational wave function for the interior of a black hole and the generalized uncertainty principle</atitle><btitle>AIP conference proceedings</btitle><date>2021-02-05</date><risdate>2021</risdate><volume>2319</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>We investigate the internal structures of a Schwarzschild black hole by solving the Wheeler-DeWitt equation. The generic bounded wave function has a bouncing point around r ≃ M, where M is the black hole mass. Due to this quantum bouncing, there appears an ambiguity to define the arrow of time. If we introduce two arrows of time, one can then interpret that two classical spacetime is annihilated around the bouncing point. Finally, we provide a conceptual explanation based on the generalized uncertainty principle.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0038344</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2021, Vol.2319 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0038344 |
source | AIP Journals Complete |
subjects | Black holes Bouncing Gravitational waves Uncertainty principles Wave functions |
title | Quantum gravitational wave function for the interior of a black hole and the generalized uncertainty principle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A43%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Quantum%20gravitational%20wave%20function%20for%20the%20interior%20of%20a%20black%20hole%20and%20the%20generalized%20uncertainty%20principle&rft.btitle=AIP%20conference%20proceedings&rft.au=Yeom,%20Dong-han&rft.date=2021-02-05&rft.volume=2319&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0038344&rft_dat=%3Cproquest_scita%3E2486609609%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486609609&rft_id=info:pmid/&rfr_iscdi=true |