Dynamics and invariant measures of multi-stochastic sine-Gordon lattices with random viscosity and nonlinear noise

We investigate mean dynamics and invariant measures for a multi-stochastic discrete sine-Gordon equation driven by random viscosity, stochastic forces, and infinite-dimensional nonlinear noise. We first show the existence of a unique solution when the random viscosity is bounded and the nonlinear di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2021-05, Vol.62 (5)
Hauptverfasser: Yang, Shuang, Li, Yangrong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Journal of mathematical physics
container_volume 62
creator Yang, Shuang
Li, Yangrong
description We investigate mean dynamics and invariant measures for a multi-stochastic discrete sine-Gordon equation driven by random viscosity, stochastic forces, and infinite-dimensional nonlinear noise. We first show the existence of a unique solution when the random viscosity is bounded and the nonlinear diffusion of noise is locally Lipschitz continuous, which leads to the existence of a mean random dynamical system. We then prove that such a mean random dynamical system possesses a unique weak pullback mean random attractor in the Bochner space. Finally, we show the existence of an invariant measure. Some difficulties arise from dealing with the term of random viscosity in all uniform estimates (including the tail-estimate) of solutions, which lead to the tightness of a family of distribution laws of solutions.
doi_str_mv 10.1063/5.0037929
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0037929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2527326647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-70be92f99af67b9cc150abb2d640cb82425429addb571dbd8058d5439f0c91e3</originalsourceid><addsrcrecordid>eNqd0MFKAzEQBuAgCtbqwTcIeFLYmmSTTXKUqlUoeOk9ZJMsTekmNclW-vautuDd0wzDN__AAHCL0Qyjpn5kM4RqLok8AxOMhKx4w8Q5mCBESEWoEJfgKucNQhgLSicgPR-C7r3JUAcLfdjr5HUosHc6D8llGDvYD9viq1yiWetcvIHZB1ctYrIxwK0u42iEX76sYRpTYg_3PpuYfTn8poYYtuOGTmPns7sGF53eZndzqlOwen1Zzd-q5cfiff60rExNeKk4ap0knZS6a3grjcEM6bYltqHItIJQwiiR2tqWcWxbKxATltFadshI7OopuDvG7lL8HFwuahOHFMaLijDCa9I0lI_q_qhMijkn16ld8r1OB4WR-vmoYur00dE-HG02vujiY_gf3sf0B9XOdvU3P9iGqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2527326647</pqid></control><display><type>article</type><title>Dynamics and invariant measures of multi-stochastic sine-Gordon lattices with random viscosity and nonlinear noise</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Yang, Shuang ; Li, Yangrong</creator><creatorcontrib>Yang, Shuang ; Li, Yangrong</creatorcontrib><description>We investigate mean dynamics and invariant measures for a multi-stochastic discrete sine-Gordon equation driven by random viscosity, stochastic forces, and infinite-dimensional nonlinear noise. We first show the existence of a unique solution when the random viscosity is bounded and the nonlinear diffusion of noise is locally Lipschitz continuous, which leads to the existence of a mean random dynamical system. We then prove that such a mean random dynamical system possesses a unique weak pullback mean random attractor in the Bochner space. Finally, we show the existence of an invariant measure. Some difficulties arise from dealing with the term of random viscosity in all uniform estimates (including the tail-estimate) of solutions, which lead to the tightness of a family of distribution laws of solutions.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0037929</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Dynamical systems ; Invariants ; Lattices ; Noise ; Physics ; Tightness ; Uniqueness ; Viscosity</subject><ispartof>Journal of mathematical physics, 2021-05, Vol.62 (5)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-70be92f99af67b9cc150abb2d640cb82425429addb571dbd8058d5439f0c91e3</citedby><cites>FETCH-LOGICAL-c327t-70be92f99af67b9cc150abb2d640cb82425429addb571dbd8058d5439f0c91e3</cites><orcidid>0000-0003-3186-3477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0037929$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4511,27923,27924,76255</link.rule.ids></links><search><creatorcontrib>Yang, Shuang</creatorcontrib><creatorcontrib>Li, Yangrong</creatorcontrib><title>Dynamics and invariant measures of multi-stochastic sine-Gordon lattices with random viscosity and nonlinear noise</title><title>Journal of mathematical physics</title><description>We investigate mean dynamics and invariant measures for a multi-stochastic discrete sine-Gordon equation driven by random viscosity, stochastic forces, and infinite-dimensional nonlinear noise. We first show the existence of a unique solution when the random viscosity is bounded and the nonlinear diffusion of noise is locally Lipschitz continuous, which leads to the existence of a mean random dynamical system. We then prove that such a mean random dynamical system possesses a unique weak pullback mean random attractor in the Bochner space. Finally, we show the existence of an invariant measure. Some difficulties arise from dealing with the term of random viscosity in all uniform estimates (including the tail-estimate) of solutions, which lead to the tightness of a family of distribution laws of solutions.</description><subject>Dynamical systems</subject><subject>Invariants</subject><subject>Lattices</subject><subject>Noise</subject><subject>Physics</subject><subject>Tightness</subject><subject>Uniqueness</subject><subject>Viscosity</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0MFKAzEQBuAgCtbqwTcIeFLYmmSTTXKUqlUoeOk9ZJMsTekmNclW-vautuDd0wzDN__AAHCL0Qyjpn5kM4RqLok8AxOMhKx4w8Q5mCBESEWoEJfgKucNQhgLSicgPR-C7r3JUAcLfdjr5HUosHc6D8llGDvYD9viq1yiWetcvIHZB1ctYrIxwK0u42iEX76sYRpTYg_3PpuYfTn8poYYtuOGTmPns7sGF53eZndzqlOwen1Zzd-q5cfiff60rExNeKk4ap0knZS6a3grjcEM6bYltqHItIJQwiiR2tqWcWxbKxATltFadshI7OopuDvG7lL8HFwuahOHFMaLijDCa9I0lI_q_qhMijkn16ld8r1OB4WR-vmoYur00dE-HG02vujiY_gf3sf0B9XOdvU3P9iGqg</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Yang, Shuang</creator><creator>Li, Yangrong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3186-3477</orcidid></search><sort><creationdate>20210501</creationdate><title>Dynamics and invariant measures of multi-stochastic sine-Gordon lattices with random viscosity and nonlinear noise</title><author>Yang, Shuang ; Li, Yangrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-70be92f99af67b9cc150abb2d640cb82425429addb571dbd8058d5439f0c91e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Dynamical systems</topic><topic>Invariants</topic><topic>Lattices</topic><topic>Noise</topic><topic>Physics</topic><topic>Tightness</topic><topic>Uniqueness</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Shuang</creatorcontrib><creatorcontrib>Li, Yangrong</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Shuang</au><au>Li, Yangrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics and invariant measures of multi-stochastic sine-Gordon lattices with random viscosity and nonlinear noise</atitle><jtitle>Journal of mathematical physics</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>62</volume><issue>5</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We investigate mean dynamics and invariant measures for a multi-stochastic discrete sine-Gordon equation driven by random viscosity, stochastic forces, and infinite-dimensional nonlinear noise. We first show the existence of a unique solution when the random viscosity is bounded and the nonlinear diffusion of noise is locally Lipschitz continuous, which leads to the existence of a mean random dynamical system. We then prove that such a mean random dynamical system possesses a unique weak pullback mean random attractor in the Bochner space. Finally, we show the existence of an invariant measure. Some difficulties arise from dealing with the term of random viscosity in all uniform estimates (including the tail-estimate) of solutions, which lead to the tightness of a family of distribution laws of solutions.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0037929</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-3186-3477</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2021-05, Vol.62 (5)
issn 0022-2488
1089-7658
language eng
recordid cdi_scitation_primary_10_1063_5_0037929
source AIP Journals Complete; Alma/SFX Local Collection
subjects Dynamical systems
Invariants
Lattices
Noise
Physics
Tightness
Uniqueness
Viscosity
title Dynamics and invariant measures of multi-stochastic sine-Gordon lattices with random viscosity and nonlinear noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A18%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20and%20invariant%20measures%20of%20multi-stochastic%20sine-Gordon%20lattices%20with%20random%20viscosity%20and%20nonlinear%20noise&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Yang,%20Shuang&rft.date=2021-05-01&rft.volume=62&rft.issue=5&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0037929&rft_dat=%3Cproquest_scita%3E2527326647%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2527326647&rft_id=info:pmid/&rfr_iscdi=true