Dynamics and invariant measures of multi-stochastic sine-Gordon lattices with random viscosity and nonlinear noise
We investigate mean dynamics and invariant measures for a multi-stochastic discrete sine-Gordon equation driven by random viscosity, stochastic forces, and infinite-dimensional nonlinear noise. We first show the existence of a unique solution when the random viscosity is bounded and the nonlinear di...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2021-05, Vol.62 (5) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Journal of mathematical physics |
container_volume | 62 |
creator | Yang, Shuang Li, Yangrong |
description | We investigate mean dynamics and invariant measures for a multi-stochastic discrete sine-Gordon equation driven by random viscosity, stochastic forces, and infinite-dimensional nonlinear noise. We first show the existence of a unique solution when the random viscosity is bounded and the nonlinear diffusion of noise is locally Lipschitz continuous, which leads to the existence of a mean random dynamical system. We then prove that such a mean random dynamical system possesses a unique weak pullback mean random attractor in the Bochner space. Finally, we show the existence of an invariant measure. Some difficulties arise from dealing with the term of random viscosity in all uniform estimates (including the tail-estimate) of solutions, which lead to the tightness of a family of distribution laws of solutions. |
doi_str_mv | 10.1063/5.0037929 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0037929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2527326647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-70be92f99af67b9cc150abb2d640cb82425429addb571dbd8058d5439f0c91e3</originalsourceid><addsrcrecordid>eNqd0MFKAzEQBuAgCtbqwTcIeFLYmmSTTXKUqlUoeOk9ZJMsTekmNclW-vautuDd0wzDN__AAHCL0Qyjpn5kM4RqLok8AxOMhKx4w8Q5mCBESEWoEJfgKucNQhgLSicgPR-C7r3JUAcLfdjr5HUosHc6D8llGDvYD9viq1yiWetcvIHZB1ctYrIxwK0u42iEX76sYRpTYg_3PpuYfTn8poYYtuOGTmPns7sGF53eZndzqlOwen1Zzd-q5cfiff60rExNeKk4ap0knZS6a3grjcEM6bYltqHItIJQwiiR2tqWcWxbKxATltFadshI7OopuDvG7lL8HFwuahOHFMaLijDCa9I0lI_q_qhMijkn16ld8r1OB4WR-vmoYur00dE-HG02vujiY_gf3sf0B9XOdvU3P9iGqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2527326647</pqid></control><display><type>article</type><title>Dynamics and invariant measures of multi-stochastic sine-Gordon lattices with random viscosity and nonlinear noise</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Yang, Shuang ; Li, Yangrong</creator><creatorcontrib>Yang, Shuang ; Li, Yangrong</creatorcontrib><description>We investigate mean dynamics and invariant measures for a multi-stochastic discrete sine-Gordon equation driven by random viscosity, stochastic forces, and infinite-dimensional nonlinear noise. We first show the existence of a unique solution when the random viscosity is bounded and the nonlinear diffusion of noise is locally Lipschitz continuous, which leads to the existence of a mean random dynamical system. We then prove that such a mean random dynamical system possesses a unique weak pullback mean random attractor in the Bochner space. Finally, we show the existence of an invariant measure. Some difficulties arise from dealing with the term of random viscosity in all uniform estimates (including the tail-estimate) of solutions, which lead to the tightness of a family of distribution laws of solutions.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0037929</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Dynamical systems ; Invariants ; Lattices ; Noise ; Physics ; Tightness ; Uniqueness ; Viscosity</subject><ispartof>Journal of mathematical physics, 2021-05, Vol.62 (5)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-70be92f99af67b9cc150abb2d640cb82425429addb571dbd8058d5439f0c91e3</citedby><cites>FETCH-LOGICAL-c327t-70be92f99af67b9cc150abb2d640cb82425429addb571dbd8058d5439f0c91e3</cites><orcidid>0000-0003-3186-3477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0037929$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4511,27923,27924,76255</link.rule.ids></links><search><creatorcontrib>Yang, Shuang</creatorcontrib><creatorcontrib>Li, Yangrong</creatorcontrib><title>Dynamics and invariant measures of multi-stochastic sine-Gordon lattices with random viscosity and nonlinear noise</title><title>Journal of mathematical physics</title><description>We investigate mean dynamics and invariant measures for a multi-stochastic discrete sine-Gordon equation driven by random viscosity, stochastic forces, and infinite-dimensional nonlinear noise. We first show the existence of a unique solution when the random viscosity is bounded and the nonlinear diffusion of noise is locally Lipschitz continuous, which leads to the existence of a mean random dynamical system. We then prove that such a mean random dynamical system possesses a unique weak pullback mean random attractor in the Bochner space. Finally, we show the existence of an invariant measure. Some difficulties arise from dealing with the term of random viscosity in all uniform estimates (including the tail-estimate) of solutions, which lead to the tightness of a family of distribution laws of solutions.</description><subject>Dynamical systems</subject><subject>Invariants</subject><subject>Lattices</subject><subject>Noise</subject><subject>Physics</subject><subject>Tightness</subject><subject>Uniqueness</subject><subject>Viscosity</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0MFKAzEQBuAgCtbqwTcIeFLYmmSTTXKUqlUoeOk9ZJMsTekmNclW-vautuDd0wzDN__AAHCL0Qyjpn5kM4RqLok8AxOMhKx4w8Q5mCBESEWoEJfgKucNQhgLSicgPR-C7r3JUAcLfdjr5HUosHc6D8llGDvYD9viq1yiWetcvIHZB1ctYrIxwK0u42iEX76sYRpTYg_3PpuYfTn8poYYtuOGTmPns7sGF53eZndzqlOwen1Zzd-q5cfiff60rExNeKk4ap0knZS6a3grjcEM6bYltqHItIJQwiiR2tqWcWxbKxATltFadshI7OopuDvG7lL8HFwuahOHFMaLijDCa9I0lI_q_qhMijkn16ld8r1OB4WR-vmoYur00dE-HG02vujiY_gf3sf0B9XOdvU3P9iGqg</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Yang, Shuang</creator><creator>Li, Yangrong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3186-3477</orcidid></search><sort><creationdate>20210501</creationdate><title>Dynamics and invariant measures of multi-stochastic sine-Gordon lattices with random viscosity and nonlinear noise</title><author>Yang, Shuang ; Li, Yangrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-70be92f99af67b9cc150abb2d640cb82425429addb571dbd8058d5439f0c91e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Dynamical systems</topic><topic>Invariants</topic><topic>Lattices</topic><topic>Noise</topic><topic>Physics</topic><topic>Tightness</topic><topic>Uniqueness</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Shuang</creatorcontrib><creatorcontrib>Li, Yangrong</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Shuang</au><au>Li, Yangrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics and invariant measures of multi-stochastic sine-Gordon lattices with random viscosity and nonlinear noise</atitle><jtitle>Journal of mathematical physics</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>62</volume><issue>5</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We investigate mean dynamics and invariant measures for a multi-stochastic discrete sine-Gordon equation driven by random viscosity, stochastic forces, and infinite-dimensional nonlinear noise. We first show the existence of a unique solution when the random viscosity is bounded and the nonlinear diffusion of noise is locally Lipschitz continuous, which leads to the existence of a mean random dynamical system. We then prove that such a mean random dynamical system possesses a unique weak pullback mean random attractor in the Bochner space. Finally, we show the existence of an invariant measure. Some difficulties arise from dealing with the term of random viscosity in all uniform estimates (including the tail-estimate) of solutions, which lead to the tightness of a family of distribution laws of solutions.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0037929</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-3186-3477</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2021-05, Vol.62 (5) |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0037929 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Dynamical systems Invariants Lattices Noise Physics Tightness Uniqueness Viscosity |
title | Dynamics and invariant measures of multi-stochastic sine-Gordon lattices with random viscosity and nonlinear noise |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A18%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20and%20invariant%20measures%20of%20multi-stochastic%20sine-Gordon%20lattices%20with%20random%20viscosity%20and%20nonlinear%20noise&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Yang,%20Shuang&rft.date=2021-05-01&rft.volume=62&rft.issue=5&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0037929&rft_dat=%3Cproquest_scita%3E2527326647%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2527326647&rft_id=info:pmid/&rfr_iscdi=true |