Achieved limit thermal conductivity and enhancements of mechanical properties in fluorite RE3NbO7 via entropy engineering

Effective governance of thermal conductivity and other properties is of significant interest for science, including the fields of thermal barrier coatings, thermoelectric materials, and limit alloys. In this study, we investigated the impact of entropy engineering on properties of fluorite RE3NbO7,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2021-02, Vol.118 (7)
Hauptverfasser: Chen, Lin, Wang, Yitao, Hu, Mingyu, Zhang, Luyang, Wang, Jiankun, Zhang, Zhibin, Liang, Xiubing, Guo, Jun, Feng, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Applied physics letters
container_volume 118
creator Chen, Lin
Wang, Yitao
Hu, Mingyu
Zhang, Luyang
Wang, Jiankun
Zhang, Zhibin
Liang, Xiubing
Guo, Jun
Feng, Jing
description Effective governance of thermal conductivity and other properties is of significant interest for science, including the fields of thermal barrier coatings, thermoelectric materials, and limit alloys. In this study, we investigated the impact of entropy engineering on properties of fluorite RE3NbO7, and limit thermal conductivity and strengthened mechanical properties are achieved. The solution strengthening mechanism leads to an 80% increase in toughness when the intrinsic stiffness and Young's modulus of the fabricated samples are identified via nanoindentation. Thermal conductivity is as low as 1.03–1.17 W m−1 K−1 at 25–900 °C, drastically reducing the gap between experimental results and theoretical limit values of fluorite RE3NbO7. The limit thermal conductivity as well as enhanced thermal expansion coefficients (11.2 × 10−6 K−1) and mechanical properties imply that the working performance of RE3NbO7 is evidently promoted by entropy engineering.
doi_str_mv 10.1063/5.0037373
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0037373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490820237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-cea81fe600da47c7ef6d8726ca674f7a9102e8c7b651051b19818dfb0756cd443</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI4u_AcBVwodk77SLofBFwwOiK5Lmt7MZGiTmqSF_nsjM-hCkLs43MN3HxyErilZUJIn99mCkISFOkEzShiLEkqLUzQjwY7yMqPn6MK5fWizOElmaFqKnYIRGtyqTnnsd2A73mJhdDMIr0blJ8x1g0HvuBbQgfYOG4k7EMFQIrC9NT1Yr8BhpbFsB2OVB_z2kLzWG4ZHxcO0D9AUdKs0gFV6e4nOJG8dXB11jj4eH95Xz9F68_SyWq4jEWfMRwJ4QSXkhDQ8ZYKBzJuCxbngOUsl4yUlMRSC1XlGSUZrWha0aGRNWJaLJk2TObo57A1vfg7gfLU3g9XhZBWnJSliEoe45uj2QAlrnLMgq96qjtupoqT6TrbKqmOygb07sE4oz70y-gcejf0Fq76R_8F_N38BR5OIgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490820237</pqid></control><display><type>article</type><title>Achieved limit thermal conductivity and enhancements of mechanical properties in fluorite RE3NbO7 via entropy engineering</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Chen, Lin ; Wang, Yitao ; Hu, Mingyu ; Zhang, Luyang ; Wang, Jiankun ; Zhang, Zhibin ; Liang, Xiubing ; Guo, Jun ; Feng, Jing</creator><creatorcontrib>Chen, Lin ; Wang, Yitao ; Hu, Mingyu ; Zhang, Luyang ; Wang, Jiankun ; Zhang, Zhibin ; Liang, Xiubing ; Guo, Jun ; Feng, Jing</creatorcontrib><description>Effective governance of thermal conductivity and other properties is of significant interest for science, including the fields of thermal barrier coatings, thermoelectric materials, and limit alloys. In this study, we investigated the impact of entropy engineering on properties of fluorite RE3NbO7, and limit thermal conductivity and strengthened mechanical properties are achieved. The solution strengthening mechanism leads to an 80% increase in toughness when the intrinsic stiffness and Young's modulus of the fabricated samples are identified via nanoindentation. Thermal conductivity is as low as 1.03–1.17 W m−1 K−1 at 25–900 °C, drastically reducing the gap between experimental results and theoretical limit values of fluorite RE3NbO7. The limit thermal conductivity as well as enhanced thermal expansion coefficients (11.2 × 10−6 K−1) and mechanical properties imply that the working performance of RE3NbO7 is evidently promoted by entropy engineering.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0037373</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Entropy ; Fluorite ; Heat conductivity ; Heat transfer ; Mechanical properties ; Modulus of elasticity ; Nanoindentation ; Solution strengthening ; Stiffness ; Thermal barrier coatings ; Thermal conductivity ; Thermal expansion ; Thermoelectric materials</subject><ispartof>Applied physics letters, 2021-02, Vol.118 (7)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-cea81fe600da47c7ef6d8726ca674f7a9102e8c7b651051b19818dfb0756cd443</citedby><cites>FETCH-LOGICAL-c257t-cea81fe600da47c7ef6d8726ca674f7a9102e8c7b651051b19818dfb0756cd443</cites><orcidid>0000-0002-4730-2845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0037373$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Wang, Yitao</creatorcontrib><creatorcontrib>Hu, Mingyu</creatorcontrib><creatorcontrib>Zhang, Luyang</creatorcontrib><creatorcontrib>Wang, Jiankun</creatorcontrib><creatorcontrib>Zhang, Zhibin</creatorcontrib><creatorcontrib>Liang, Xiubing</creatorcontrib><creatorcontrib>Guo, Jun</creatorcontrib><creatorcontrib>Feng, Jing</creatorcontrib><title>Achieved limit thermal conductivity and enhancements of mechanical properties in fluorite RE3NbO7 via entropy engineering</title><title>Applied physics letters</title><description>Effective governance of thermal conductivity and other properties is of significant interest for science, including the fields of thermal barrier coatings, thermoelectric materials, and limit alloys. In this study, we investigated the impact of entropy engineering on properties of fluorite RE3NbO7, and limit thermal conductivity and strengthened mechanical properties are achieved. The solution strengthening mechanism leads to an 80% increase in toughness when the intrinsic stiffness and Young's modulus of the fabricated samples are identified via nanoindentation. Thermal conductivity is as low as 1.03–1.17 W m−1 K−1 at 25–900 °C, drastically reducing the gap between experimental results and theoretical limit values of fluorite RE3NbO7. The limit thermal conductivity as well as enhanced thermal expansion coefficients (11.2 × 10−6 K−1) and mechanical properties imply that the working performance of RE3NbO7 is evidently promoted by entropy engineering.</description><subject>Applied physics</subject><subject>Entropy</subject><subject>Fluorite</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Nanoindentation</subject><subject>Solution strengthening</subject><subject>Stiffness</subject><subject>Thermal barrier coatings</subject><subject>Thermal conductivity</subject><subject>Thermal expansion</subject><subject>Thermoelectric materials</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI4u_AcBVwodk77SLofBFwwOiK5Lmt7MZGiTmqSF_nsjM-hCkLs43MN3HxyErilZUJIn99mCkISFOkEzShiLEkqLUzQjwY7yMqPn6MK5fWizOElmaFqKnYIRGtyqTnnsd2A73mJhdDMIr0blJ8x1g0HvuBbQgfYOG4k7EMFQIrC9NT1Yr8BhpbFsB2OVB_z2kLzWG4ZHxcO0D9AUdKs0gFV6e4nOJG8dXB11jj4eH95Xz9F68_SyWq4jEWfMRwJ4QSXkhDQ8ZYKBzJuCxbngOUsl4yUlMRSC1XlGSUZrWha0aGRNWJaLJk2TObo57A1vfg7gfLU3g9XhZBWnJSliEoe45uj2QAlrnLMgq96qjtupoqT6TrbKqmOygb07sE4oz70y-gcejf0Fq76R_8F_N38BR5OIgg</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>Chen, Lin</creator><creator>Wang, Yitao</creator><creator>Hu, Mingyu</creator><creator>Zhang, Luyang</creator><creator>Wang, Jiankun</creator><creator>Zhang, Zhibin</creator><creator>Liang, Xiubing</creator><creator>Guo, Jun</creator><creator>Feng, Jing</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4730-2845</orcidid></search><sort><creationdate>20210215</creationdate><title>Achieved limit thermal conductivity and enhancements of mechanical properties in fluorite RE3NbO7 via entropy engineering</title><author>Chen, Lin ; Wang, Yitao ; Hu, Mingyu ; Zhang, Luyang ; Wang, Jiankun ; Zhang, Zhibin ; Liang, Xiubing ; Guo, Jun ; Feng, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-cea81fe600da47c7ef6d8726ca674f7a9102e8c7b651051b19818dfb0756cd443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Entropy</topic><topic>Fluorite</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Nanoindentation</topic><topic>Solution strengthening</topic><topic>Stiffness</topic><topic>Thermal barrier coatings</topic><topic>Thermal conductivity</topic><topic>Thermal expansion</topic><topic>Thermoelectric materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Wang, Yitao</creatorcontrib><creatorcontrib>Hu, Mingyu</creatorcontrib><creatorcontrib>Zhang, Luyang</creatorcontrib><creatorcontrib>Wang, Jiankun</creatorcontrib><creatorcontrib>Zhang, Zhibin</creatorcontrib><creatorcontrib>Liang, Xiubing</creatorcontrib><creatorcontrib>Guo, Jun</creatorcontrib><creatorcontrib>Feng, Jing</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lin</au><au>Wang, Yitao</au><au>Hu, Mingyu</au><au>Zhang, Luyang</au><au>Wang, Jiankun</au><au>Zhang, Zhibin</au><au>Liang, Xiubing</au><au>Guo, Jun</au><au>Feng, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieved limit thermal conductivity and enhancements of mechanical properties in fluorite RE3NbO7 via entropy engineering</atitle><jtitle>Applied physics letters</jtitle><date>2021-02-15</date><risdate>2021</risdate><volume>118</volume><issue>7</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Effective governance of thermal conductivity and other properties is of significant interest for science, including the fields of thermal barrier coatings, thermoelectric materials, and limit alloys. In this study, we investigated the impact of entropy engineering on properties of fluorite RE3NbO7, and limit thermal conductivity and strengthened mechanical properties are achieved. The solution strengthening mechanism leads to an 80% increase in toughness when the intrinsic stiffness and Young's modulus of the fabricated samples are identified via nanoindentation. Thermal conductivity is as low as 1.03–1.17 W m−1 K−1 at 25–900 °C, drastically reducing the gap between experimental results and theoretical limit values of fluorite RE3NbO7. The limit thermal conductivity as well as enhanced thermal expansion coefficients (11.2 × 10−6 K−1) and mechanical properties imply that the working performance of RE3NbO7 is evidently promoted by entropy engineering.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0037373</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4730-2845</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2021-02, Vol.118 (7)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_5_0037373
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Entropy
Fluorite
Heat conductivity
Heat transfer
Mechanical properties
Modulus of elasticity
Nanoindentation
Solution strengthening
Stiffness
Thermal barrier coatings
Thermal conductivity
Thermal expansion
Thermoelectric materials
title Achieved limit thermal conductivity and enhancements of mechanical properties in fluorite RE3NbO7 via entropy engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A08%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieved%20limit%20thermal%20conductivity%20and%20enhancements%20of%20mechanical%20properties%20in%20fluorite%20RE3NbO7%20via%20entropy%20engineering&rft.jtitle=Applied%20physics%20letters&rft.au=Chen,%20Lin&rft.date=2021-02-15&rft.volume=118&rft.issue=7&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0037373&rft_dat=%3Cproquest_scita%3E2490820237%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490820237&rft_id=info:pmid/&rfr_iscdi=true