Achieved limit thermal conductivity and enhancements of mechanical properties in fluorite RE3NbO7 via entropy engineering
Effective governance of thermal conductivity and other properties is of significant interest for science, including the fields of thermal barrier coatings, thermoelectric materials, and limit alloys. In this study, we investigated the impact of entropy engineering on properties of fluorite RE3NbO7,...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2021-02, Vol.118 (7) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 118 |
creator | Chen, Lin Wang, Yitao Hu, Mingyu Zhang, Luyang Wang, Jiankun Zhang, Zhibin Liang, Xiubing Guo, Jun Feng, Jing |
description | Effective governance of thermal conductivity and other properties is of significant interest for science, including the fields of thermal barrier coatings, thermoelectric materials, and limit alloys. In this study, we investigated the impact of entropy engineering on properties of fluorite RE3NbO7, and limit thermal conductivity and strengthened mechanical properties are achieved. The solution strengthening mechanism leads to an 80% increase in toughness when the intrinsic stiffness and Young's modulus of the fabricated samples are identified via nanoindentation. Thermal conductivity is as low as 1.03–1.17 W m−1 K−1 at 25–900 °C, drastically reducing the gap between experimental results and theoretical limit values of fluorite RE3NbO7. The limit thermal conductivity as well as enhanced thermal expansion coefficients (11.2 × 10−6 K−1) and mechanical properties imply that the working performance of RE3NbO7 is evidently promoted by entropy engineering. |
doi_str_mv | 10.1063/5.0037373 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0037373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490820237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-cea81fe600da47c7ef6d8726ca674f7a9102e8c7b651051b19818dfb0756cd443</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI4u_AcBVwodk77SLofBFwwOiK5Lmt7MZGiTmqSF_nsjM-hCkLs43MN3HxyErilZUJIn99mCkISFOkEzShiLEkqLUzQjwY7yMqPn6MK5fWizOElmaFqKnYIRGtyqTnnsd2A73mJhdDMIr0blJ8x1g0HvuBbQgfYOG4k7EMFQIrC9NT1Yr8BhpbFsB2OVB_z2kLzWG4ZHxcO0D9AUdKs0gFV6e4nOJG8dXB11jj4eH95Xz9F68_SyWq4jEWfMRwJ4QSXkhDQ8ZYKBzJuCxbngOUsl4yUlMRSC1XlGSUZrWha0aGRNWJaLJk2TObo57A1vfg7gfLU3g9XhZBWnJSliEoe45uj2QAlrnLMgq96qjtupoqT6TrbKqmOygb07sE4oz70y-gcejf0Fq76R_8F_N38BR5OIgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490820237</pqid></control><display><type>article</type><title>Achieved limit thermal conductivity and enhancements of mechanical properties in fluorite RE3NbO7 via entropy engineering</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Chen, Lin ; Wang, Yitao ; Hu, Mingyu ; Zhang, Luyang ; Wang, Jiankun ; Zhang, Zhibin ; Liang, Xiubing ; Guo, Jun ; Feng, Jing</creator><creatorcontrib>Chen, Lin ; Wang, Yitao ; Hu, Mingyu ; Zhang, Luyang ; Wang, Jiankun ; Zhang, Zhibin ; Liang, Xiubing ; Guo, Jun ; Feng, Jing</creatorcontrib><description>Effective governance of thermal conductivity and other properties is of significant interest for science, including the fields of thermal barrier coatings, thermoelectric materials, and limit alloys. In this study, we investigated the impact of entropy engineering on properties of fluorite RE3NbO7, and limit thermal conductivity and strengthened mechanical properties are achieved. The solution strengthening mechanism leads to an 80% increase in toughness when the intrinsic stiffness and Young's modulus of the fabricated samples are identified via nanoindentation. Thermal conductivity is as low as 1.03–1.17 W m−1 K−1 at 25–900 °C, drastically reducing the gap between experimental results and theoretical limit values of fluorite RE3NbO7. The limit thermal conductivity as well as enhanced thermal expansion coefficients (11.2 × 10−6 K−1) and mechanical properties imply that the working performance of RE3NbO7 is evidently promoted by entropy engineering.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0037373</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Entropy ; Fluorite ; Heat conductivity ; Heat transfer ; Mechanical properties ; Modulus of elasticity ; Nanoindentation ; Solution strengthening ; Stiffness ; Thermal barrier coatings ; Thermal conductivity ; Thermal expansion ; Thermoelectric materials</subject><ispartof>Applied physics letters, 2021-02, Vol.118 (7)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-cea81fe600da47c7ef6d8726ca674f7a9102e8c7b651051b19818dfb0756cd443</citedby><cites>FETCH-LOGICAL-c257t-cea81fe600da47c7ef6d8726ca674f7a9102e8c7b651051b19818dfb0756cd443</cites><orcidid>0000-0002-4730-2845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0037373$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Wang, Yitao</creatorcontrib><creatorcontrib>Hu, Mingyu</creatorcontrib><creatorcontrib>Zhang, Luyang</creatorcontrib><creatorcontrib>Wang, Jiankun</creatorcontrib><creatorcontrib>Zhang, Zhibin</creatorcontrib><creatorcontrib>Liang, Xiubing</creatorcontrib><creatorcontrib>Guo, Jun</creatorcontrib><creatorcontrib>Feng, Jing</creatorcontrib><title>Achieved limit thermal conductivity and enhancements of mechanical properties in fluorite RE3NbO7 via entropy engineering</title><title>Applied physics letters</title><description>Effective governance of thermal conductivity and other properties is of significant interest for science, including the fields of thermal barrier coatings, thermoelectric materials, and limit alloys. In this study, we investigated the impact of entropy engineering on properties of fluorite RE3NbO7, and limit thermal conductivity and strengthened mechanical properties are achieved. The solution strengthening mechanism leads to an 80% increase in toughness when the intrinsic stiffness and Young's modulus of the fabricated samples are identified via nanoindentation. Thermal conductivity is as low as 1.03–1.17 W m−1 K−1 at 25–900 °C, drastically reducing the gap between experimental results and theoretical limit values of fluorite RE3NbO7. The limit thermal conductivity as well as enhanced thermal expansion coefficients (11.2 × 10−6 K−1) and mechanical properties imply that the working performance of RE3NbO7 is evidently promoted by entropy engineering.</description><subject>Applied physics</subject><subject>Entropy</subject><subject>Fluorite</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Nanoindentation</subject><subject>Solution strengthening</subject><subject>Stiffness</subject><subject>Thermal barrier coatings</subject><subject>Thermal conductivity</subject><subject>Thermal expansion</subject><subject>Thermoelectric materials</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI4u_AcBVwodk77SLofBFwwOiK5Lmt7MZGiTmqSF_nsjM-hCkLs43MN3HxyErilZUJIn99mCkISFOkEzShiLEkqLUzQjwY7yMqPn6MK5fWizOElmaFqKnYIRGtyqTnnsd2A73mJhdDMIr0blJ8x1g0HvuBbQgfYOG4k7EMFQIrC9NT1Yr8BhpbFsB2OVB_z2kLzWG4ZHxcO0D9AUdKs0gFV6e4nOJG8dXB11jj4eH95Xz9F68_SyWq4jEWfMRwJ4QSXkhDQ8ZYKBzJuCxbngOUsl4yUlMRSC1XlGSUZrWha0aGRNWJaLJk2TObo57A1vfg7gfLU3g9XhZBWnJSliEoe45uj2QAlrnLMgq96qjtupoqT6TrbKqmOygb07sE4oz70y-gcejf0Fq76R_8F_N38BR5OIgg</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>Chen, Lin</creator><creator>Wang, Yitao</creator><creator>Hu, Mingyu</creator><creator>Zhang, Luyang</creator><creator>Wang, Jiankun</creator><creator>Zhang, Zhibin</creator><creator>Liang, Xiubing</creator><creator>Guo, Jun</creator><creator>Feng, Jing</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4730-2845</orcidid></search><sort><creationdate>20210215</creationdate><title>Achieved limit thermal conductivity and enhancements of mechanical properties in fluorite RE3NbO7 via entropy engineering</title><author>Chen, Lin ; Wang, Yitao ; Hu, Mingyu ; Zhang, Luyang ; Wang, Jiankun ; Zhang, Zhibin ; Liang, Xiubing ; Guo, Jun ; Feng, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-cea81fe600da47c7ef6d8726ca674f7a9102e8c7b651051b19818dfb0756cd443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Entropy</topic><topic>Fluorite</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Nanoindentation</topic><topic>Solution strengthening</topic><topic>Stiffness</topic><topic>Thermal barrier coatings</topic><topic>Thermal conductivity</topic><topic>Thermal expansion</topic><topic>Thermoelectric materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Wang, Yitao</creatorcontrib><creatorcontrib>Hu, Mingyu</creatorcontrib><creatorcontrib>Zhang, Luyang</creatorcontrib><creatorcontrib>Wang, Jiankun</creatorcontrib><creatorcontrib>Zhang, Zhibin</creatorcontrib><creatorcontrib>Liang, Xiubing</creatorcontrib><creatorcontrib>Guo, Jun</creatorcontrib><creatorcontrib>Feng, Jing</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lin</au><au>Wang, Yitao</au><au>Hu, Mingyu</au><au>Zhang, Luyang</au><au>Wang, Jiankun</au><au>Zhang, Zhibin</au><au>Liang, Xiubing</au><au>Guo, Jun</au><au>Feng, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieved limit thermal conductivity and enhancements of mechanical properties in fluorite RE3NbO7 via entropy engineering</atitle><jtitle>Applied physics letters</jtitle><date>2021-02-15</date><risdate>2021</risdate><volume>118</volume><issue>7</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Effective governance of thermal conductivity and other properties is of significant interest for science, including the fields of thermal barrier coatings, thermoelectric materials, and limit alloys. In this study, we investigated the impact of entropy engineering on properties of fluorite RE3NbO7, and limit thermal conductivity and strengthened mechanical properties are achieved. The solution strengthening mechanism leads to an 80% increase in toughness when the intrinsic stiffness and Young's modulus of the fabricated samples are identified via nanoindentation. Thermal conductivity is as low as 1.03–1.17 W m−1 K−1 at 25–900 °C, drastically reducing the gap between experimental results and theoretical limit values of fluorite RE3NbO7. The limit thermal conductivity as well as enhanced thermal expansion coefficients (11.2 × 10−6 K−1) and mechanical properties imply that the working performance of RE3NbO7 is evidently promoted by entropy engineering.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0037373</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4730-2845</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2021-02, Vol.118 (7) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0037373 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Entropy Fluorite Heat conductivity Heat transfer Mechanical properties Modulus of elasticity Nanoindentation Solution strengthening Stiffness Thermal barrier coatings Thermal conductivity Thermal expansion Thermoelectric materials |
title | Achieved limit thermal conductivity and enhancements of mechanical properties in fluorite RE3NbO7 via entropy engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A08%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieved%20limit%20thermal%20conductivity%20and%20enhancements%20of%20mechanical%20properties%20in%20fluorite%20RE3NbO7%20via%20entropy%20engineering&rft.jtitle=Applied%20physics%20letters&rft.au=Chen,%20Lin&rft.date=2021-02-15&rft.volume=118&rft.issue=7&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0037373&rft_dat=%3Cproquest_scita%3E2490820237%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490820237&rft_id=info:pmid/&rfr_iscdi=true |