Spin-orbit torque and Dzyaloshinskii–Moriya interaction in 4d metal Rh-based magnetic heterostructures
The electrical switching of magnetization through spin–orbit torque (SOT) has potential applications for energy-efficient spintronic devices. Previous studies focused mostly on 5d heavy metals with strong spin–orbit coupling (SOC) to generate a spin current or a nonequilibrium spin accumulation and...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2021-03, Vol.118 (11) |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 118 |
creator | Cao, Cuimei Chen, Shiwei Song, Wenjie Zhu, Xiaoyan Hu, Shuai Qiu, Xuepeng Chai, Guozhi Sun, Lin Cheng, Wenjuan Jiang, Dongmei Zhan, Qingfeng |
description | The electrical switching of magnetization through spin–orbit torque (SOT) has potential applications for energy-efficient spintronic devices. Previous studies focused mostly on 5d heavy metals with strong spin–orbit coupling (SOC) to generate a spin current or a nonequilibrium spin accumulation and exert SOTs on the magnetization of a neighboring ferromagnetic layer. Recent theoretical and experimental studies indicated that 4d metals with weak SOC may also generate a sizable torque and realize the current-induced magnetization switching. In this work, we studied the current-induced SOTs in 4d metal Rh-based magnetic heterostructures with a perpendicular magnetic anisotropy. The damping-like SOT efficiency ξDL of [Ni/Co]3/Rh multilayers increases with the Rh thickness tRh and becomes saturated at tRh = 5 nm. Although the spin-Hall angle of Rh is rather small about 0.028 ± 0.005, a reversible current-induced SOT switching can still be achieved. In addition, the interfacial Dzyaloshinskii-Moriya interaction (iDMI) in Rh/Co heterostructures was quantitatively characterized by using Brillouin light scattering. The iDMI constant D increases with tRh and reaches 224 ± 39 μJ/m2 at tRh = 5 nm. Our results indicated that even for a weak SOC 4d metal Rh, it is still possible to obtain a current-induced magnetization switching and observe an obvious iDMI effect in the Rh-based magnetic heterostructures, which may broaden the scope of spintronic materials used for SOT devices. |
doi_str_mv | 10.1063/5.0034708 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0034708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501336857</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-78156412d1bd6a4d80ee23eadc84eae6b6f4ef3f724d7dcad0a33766a7a0dc383</originalsourceid><addsrcrecordid>eNp9kM9KAzEQxoMoWKsH3yDgTdiabHaTeJT6FyqCf85hdpN1U9vNmmSFevIdfEOfxJQWvHma-YbfzPB9CB1TMqGEs7NyQggrBJE7aESJEBmjVO6iEUnjjJ-XdB8dhDBPsswZG6H2qbdd5nxlI47Ovw8GQ6fx5ecKFi60tgtv1v58fd87b1eAbReNhzpa16UeFxovTYQFfmyzCoJJEl47E22NW5NIF6If6jh4Ew7RXgOLYI62dYxerq-ep7fZ7OHmbnoxy3oqWcyEpCUvaK5ppTkUWhJjcmZA17IwYHjFm8I0rBF5oYWuQRNgTHAOAoiumWRjdLK523uX3ISo5m7wXXqp8pJQxrgsRaJON1SobYS1HdV7uwS_Uh_Oq1JtU1S9bv6DKVHr2P8W2C-r83dG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501336857</pqid></control><display><type>article</type><title>Spin-orbit torque and Dzyaloshinskii–Moriya interaction in 4d metal Rh-based magnetic heterostructures</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Cao, Cuimei ; Chen, Shiwei ; Song, Wenjie ; Zhu, Xiaoyan ; Hu, Shuai ; Qiu, Xuepeng ; Chai, Guozhi ; Sun, Lin ; Cheng, Wenjuan ; Jiang, Dongmei ; Zhan, Qingfeng</creator><creatorcontrib>Cao, Cuimei ; Chen, Shiwei ; Song, Wenjie ; Zhu, Xiaoyan ; Hu, Shuai ; Qiu, Xuepeng ; Chai, Guozhi ; Sun, Lin ; Cheng, Wenjuan ; Jiang, Dongmei ; Zhan, Qingfeng</creatorcontrib><description>The electrical switching of magnetization through spin–orbit torque (SOT) has potential applications for energy-efficient spintronic devices. Previous studies focused mostly on 5d heavy metals with strong spin–orbit coupling (SOC) to generate a spin current or a nonequilibrium spin accumulation and exert SOTs on the magnetization of a neighboring ferromagnetic layer. Recent theoretical and experimental studies indicated that 4d metals with weak SOC may also generate a sizable torque and realize the current-induced magnetization switching. In this work, we studied the current-induced SOTs in 4d metal Rh-based magnetic heterostructures with a perpendicular magnetic anisotropy. The damping-like SOT efficiency ξDL of [Ni/Co]3/Rh multilayers increases with the Rh thickness tRh and becomes saturated at tRh = 5 nm. Although the spin-Hall angle of Rh is rather small about 0.028 ± 0.005, a reversible current-induced SOT switching can still be achieved. In addition, the interfacial Dzyaloshinskii-Moriya interaction (iDMI) in Rh/Co heterostructures was quantitatively characterized by using Brillouin light scattering. The iDMI constant D increases with tRh and reaches 224 ± 39 μJ/m2 at tRh = 5 nm. Our results indicated that even for a weak SOC 4d metal Rh, it is still possible to obtain a current-induced magnetization switching and observe an obvious iDMI effect in the Rh-based magnetic heterostructures, which may broaden the scope of spintronic materials used for SOT devices.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0034708</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Damping ; Ferromagnetism ; Heavy metals ; Heterostructures ; Light scattering ; Magnetic anisotropy ; Magnetic switching ; Magnetization ; Multilayers ; Spin-orbit interactions ; Spintronics ; Torque</subject><ispartof>Applied physics letters, 2021-03, Vol.118 (11)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5615-1519 ; 0000-0002-3748-1835 ; 0000-0003-4242-1877 ; 0000-0003-4614-9735 ; 0000-0003-3954-3144</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0034708$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76256</link.rule.ids></links><search><creatorcontrib>Cao, Cuimei</creatorcontrib><creatorcontrib>Chen, Shiwei</creatorcontrib><creatorcontrib>Song, Wenjie</creatorcontrib><creatorcontrib>Zhu, Xiaoyan</creatorcontrib><creatorcontrib>Hu, Shuai</creatorcontrib><creatorcontrib>Qiu, Xuepeng</creatorcontrib><creatorcontrib>Chai, Guozhi</creatorcontrib><creatorcontrib>Sun, Lin</creatorcontrib><creatorcontrib>Cheng, Wenjuan</creatorcontrib><creatorcontrib>Jiang, Dongmei</creatorcontrib><creatorcontrib>Zhan, Qingfeng</creatorcontrib><title>Spin-orbit torque and Dzyaloshinskii–Moriya interaction in 4d metal Rh-based magnetic heterostructures</title><title>Applied physics letters</title><description>The electrical switching of magnetization through spin–orbit torque (SOT) has potential applications for energy-efficient spintronic devices. Previous studies focused mostly on 5d heavy metals with strong spin–orbit coupling (SOC) to generate a spin current or a nonequilibrium spin accumulation and exert SOTs on the magnetization of a neighboring ferromagnetic layer. Recent theoretical and experimental studies indicated that 4d metals with weak SOC may also generate a sizable torque and realize the current-induced magnetization switching. In this work, we studied the current-induced SOTs in 4d metal Rh-based magnetic heterostructures with a perpendicular magnetic anisotropy. The damping-like SOT efficiency ξDL of [Ni/Co]3/Rh multilayers increases with the Rh thickness tRh and becomes saturated at tRh = 5 nm. Although the spin-Hall angle of Rh is rather small about 0.028 ± 0.005, a reversible current-induced SOT switching can still be achieved. In addition, the interfacial Dzyaloshinskii-Moriya interaction (iDMI) in Rh/Co heterostructures was quantitatively characterized by using Brillouin light scattering. The iDMI constant D increases with tRh and reaches 224 ± 39 μJ/m2 at tRh = 5 nm. Our results indicated that even for a weak SOC 4d metal Rh, it is still possible to obtain a current-induced magnetization switching and observe an obvious iDMI effect in the Rh-based magnetic heterostructures, which may broaden the scope of spintronic materials used for SOT devices.</description><subject>Applied physics</subject><subject>Damping</subject><subject>Ferromagnetism</subject><subject>Heavy metals</subject><subject>Heterostructures</subject><subject>Light scattering</subject><subject>Magnetic anisotropy</subject><subject>Magnetic switching</subject><subject>Magnetization</subject><subject>Multilayers</subject><subject>Spin-orbit interactions</subject><subject>Spintronics</subject><subject>Torque</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQxoMoWKsH3yDgTdiabHaTeJT6FyqCf85hdpN1U9vNmmSFevIdfEOfxJQWvHma-YbfzPB9CB1TMqGEs7NyQggrBJE7aESJEBmjVO6iEUnjjJ-XdB8dhDBPsswZG6H2qbdd5nxlI47Ovw8GQ6fx5ecKFi60tgtv1v58fd87b1eAbReNhzpa16UeFxovTYQFfmyzCoJJEl47E22NW5NIF6If6jh4Ew7RXgOLYI62dYxerq-ep7fZ7OHmbnoxy3oqWcyEpCUvaK5ppTkUWhJjcmZA17IwYHjFm8I0rBF5oYWuQRNgTHAOAoiumWRjdLK523uX3ISo5m7wXXqp8pJQxrgsRaJON1SobYS1HdV7uwS_Uh_Oq1JtU1S9bv6DKVHr2P8W2C-r83dG</recordid><startdate>20210315</startdate><enddate>20210315</enddate><creator>Cao, Cuimei</creator><creator>Chen, Shiwei</creator><creator>Song, Wenjie</creator><creator>Zhu, Xiaoyan</creator><creator>Hu, Shuai</creator><creator>Qiu, Xuepeng</creator><creator>Chai, Guozhi</creator><creator>Sun, Lin</creator><creator>Cheng, Wenjuan</creator><creator>Jiang, Dongmei</creator><creator>Zhan, Qingfeng</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5615-1519</orcidid><orcidid>https://orcid.org/0000-0002-3748-1835</orcidid><orcidid>https://orcid.org/0000-0003-4242-1877</orcidid><orcidid>https://orcid.org/0000-0003-4614-9735</orcidid><orcidid>https://orcid.org/0000-0003-3954-3144</orcidid></search><sort><creationdate>20210315</creationdate><title>Spin-orbit torque and Dzyaloshinskii–Moriya interaction in 4d metal Rh-based magnetic heterostructures</title><author>Cao, Cuimei ; Chen, Shiwei ; Song, Wenjie ; Zhu, Xiaoyan ; Hu, Shuai ; Qiu, Xuepeng ; Chai, Guozhi ; Sun, Lin ; Cheng, Wenjuan ; Jiang, Dongmei ; Zhan, Qingfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-78156412d1bd6a4d80ee23eadc84eae6b6f4ef3f724d7dcad0a33766a7a0dc383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Damping</topic><topic>Ferromagnetism</topic><topic>Heavy metals</topic><topic>Heterostructures</topic><topic>Light scattering</topic><topic>Magnetic anisotropy</topic><topic>Magnetic switching</topic><topic>Magnetization</topic><topic>Multilayers</topic><topic>Spin-orbit interactions</topic><topic>Spintronics</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Cuimei</creatorcontrib><creatorcontrib>Chen, Shiwei</creatorcontrib><creatorcontrib>Song, Wenjie</creatorcontrib><creatorcontrib>Zhu, Xiaoyan</creatorcontrib><creatorcontrib>Hu, Shuai</creatorcontrib><creatorcontrib>Qiu, Xuepeng</creatorcontrib><creatorcontrib>Chai, Guozhi</creatorcontrib><creatorcontrib>Sun, Lin</creatorcontrib><creatorcontrib>Cheng, Wenjuan</creatorcontrib><creatorcontrib>Jiang, Dongmei</creatorcontrib><creatorcontrib>Zhan, Qingfeng</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Cuimei</au><au>Chen, Shiwei</au><au>Song, Wenjie</au><au>Zhu, Xiaoyan</au><au>Hu, Shuai</au><au>Qiu, Xuepeng</au><au>Chai, Guozhi</au><au>Sun, Lin</au><au>Cheng, Wenjuan</au><au>Jiang, Dongmei</au><au>Zhan, Qingfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin-orbit torque and Dzyaloshinskii–Moriya interaction in 4d metal Rh-based magnetic heterostructures</atitle><jtitle>Applied physics letters</jtitle><date>2021-03-15</date><risdate>2021</risdate><volume>118</volume><issue>11</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The electrical switching of magnetization through spin–orbit torque (SOT) has potential applications for energy-efficient spintronic devices. Previous studies focused mostly on 5d heavy metals with strong spin–orbit coupling (SOC) to generate a spin current or a nonequilibrium spin accumulation and exert SOTs on the magnetization of a neighboring ferromagnetic layer. Recent theoretical and experimental studies indicated that 4d metals with weak SOC may also generate a sizable torque and realize the current-induced magnetization switching. In this work, we studied the current-induced SOTs in 4d metal Rh-based magnetic heterostructures with a perpendicular magnetic anisotropy. The damping-like SOT efficiency ξDL of [Ni/Co]3/Rh multilayers increases with the Rh thickness tRh and becomes saturated at tRh = 5 nm. Although the spin-Hall angle of Rh is rather small about 0.028 ± 0.005, a reversible current-induced SOT switching can still be achieved. In addition, the interfacial Dzyaloshinskii-Moriya interaction (iDMI) in Rh/Co heterostructures was quantitatively characterized by using Brillouin light scattering. The iDMI constant D increases with tRh and reaches 224 ± 39 μJ/m2 at tRh = 5 nm. Our results indicated that even for a weak SOC 4d metal Rh, it is still possible to obtain a current-induced magnetization switching and observe an obvious iDMI effect in the Rh-based magnetic heterostructures, which may broaden the scope of spintronic materials used for SOT devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0034708</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-5615-1519</orcidid><orcidid>https://orcid.org/0000-0002-3748-1835</orcidid><orcidid>https://orcid.org/0000-0003-4242-1877</orcidid><orcidid>https://orcid.org/0000-0003-4614-9735</orcidid><orcidid>https://orcid.org/0000-0003-3954-3144</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2021-03, Vol.118 (11) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0034708 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Damping Ferromagnetism Heavy metals Heterostructures Light scattering Magnetic anisotropy Magnetic switching Magnetization Multilayers Spin-orbit interactions Spintronics Torque |
title | Spin-orbit torque and Dzyaloshinskii–Moriya interaction in 4d metal Rh-based magnetic heterostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A28%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin-orbit%20torque%20and%20Dzyaloshinskii%E2%80%93Moriya%20interaction%20in%204d%20metal%20Rh-based%20magnetic%20heterostructures&rft.jtitle=Applied%20physics%20letters&rft.au=Cao,%20Cuimei&rft.date=2021-03-15&rft.volume=118&rft.issue=11&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0034708&rft_dat=%3Cproquest_scita%3E2501336857%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501336857&rft_id=info:pmid/&rfr_iscdi=true |