Design and analysis of an inlet and combustion chamber of scramjet engine
Scramjet is an air-breathing engine that uses the oblique or conical shock waves generated during the hypersonic/supersonic flight, to promote compression and deceleration of free stream atmospheric air at the inlet of the scramjet. The combustion includes turbulent mixing, shock interaction and hea...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2311 |
creator | Paramasivam, Karthikeyan Dhas, Anderson Arul Gnana Joy, Nivin Balakrishnan, Kanimozhi Harsha, Vedagiri Sri Yuvaraj, R. |
description | Scramjet is an air-breathing engine that uses the oblique or conical shock waves generated during the hypersonic/supersonic flight, to promote compression and deceleration of free stream atmospheric air at the inlet of the scramjet. The combustion includes turbulent mixing, shock interaction and heat release in supersonic flow. The problem associated with combustion is mixing of fuel with air. The scramjet engine can be operating at Mach no. 3.4 to 5 in order to eliminate other propulsive engine. Here the number of ramps and the ramp angle is changed and the thickness and length of combustion chamber is changed. If the length and thickness of the combustion chamber is changed then the fuel will get enough time to mix with air to achieve the desirable thrust. The main objective of this project is to design a scramjet inlet and combustion chamber for efficient fuel combustion by flow analysis. This includes the variation of flow from inlet and combustion chamber by considering the boundary conditions of scramjet engine design. The flow analysis is carried out here by using computational fluid dynamics (CFD) and the modelling of engine's inlet and combustion chamber is done using CATIA. |
doi_str_mv | 10.1063/5.0034510 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0034510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2467693484</sourcerecordid><originalsourceid>FETCH-LOGICAL-p288t-63b46d9844ae18e5cc3ddda304c5f810fd04bbd6f39be0f04602ee7ba42dc9d43</originalsourceid><addsrcrecordid>eNp90EtLw0AQB_BFFKzVg98g4E1Inc0-sjlKfRUKXhS8LfusW5qHu4nQb29iC948DDMwP4Y_g9A1hgUGTu7YAoBQhuEEzTBjOC855qdoBlDRvKDk4xxdpLQFKKqyFDO0enApbJpMNXYstdunkLLWj3MWmp3rfxemrfWQ-tA2mflUtXZxIslEVW9H4ppNaNwlOvNql9zVsc_R-9Pj2_IlX78-r5b367wrhOhzTjTlthKUKoeFY8YQa60iQA3zAoO3QLW23JNKO_BAORTOlVrRwprKUjJHN4e7XWy_Bpd6uW2HOEZPsqC85BWhYlK3B5VM6NUUXXYx1CruJQY5vUoyeXzVf_i7jX9QdtaTH7PwaeY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2467693484</pqid></control><display><type>conference_proceeding</type><title>Design and analysis of an inlet and combustion chamber of scramjet engine</title><source>AIP Journals Complete</source><creator>Paramasivam, Karthikeyan ; Dhas, Anderson Arul Gnana ; Joy, Nivin ; Balakrishnan, Kanimozhi ; Harsha, Vedagiri Sri ; Yuvaraj, R.</creator><contributor>Subramaniam, Prakash ; Kavitha, K R ; Ganesan, S ; Anish, M ; Joy, Nivin ; Sasipraba, T ; Jayaprabakar, J</contributor><creatorcontrib>Paramasivam, Karthikeyan ; Dhas, Anderson Arul Gnana ; Joy, Nivin ; Balakrishnan, Kanimozhi ; Harsha, Vedagiri Sri ; Yuvaraj, R. ; Subramaniam, Prakash ; Kavitha, K R ; Ganesan, S ; Anish, M ; Joy, Nivin ; Sasipraba, T ; Jayaprabakar, J</creatorcontrib><description>Scramjet is an air-breathing engine that uses the oblique or conical shock waves generated during the hypersonic/supersonic flight, to promote compression and deceleration of free stream atmospheric air at the inlet of the scramjet. The combustion includes turbulent mixing, shock interaction and heat release in supersonic flow. The problem associated with combustion is mixing of fuel with air. The scramjet engine can be operating at Mach no. 3.4 to 5 in order to eliminate other propulsive engine. Here the number of ramps and the ramp angle is changed and the thickness and length of combustion chamber is changed. If the length and thickness of the combustion chamber is changed then the fuel will get enough time to mix with air to achieve the desirable thrust. The main objective of this project is to design a scramjet inlet and combustion chamber for efficient fuel combustion by flow analysis. This includes the variation of flow from inlet and combustion chamber by considering the boundary conditions of scramjet engine design. The flow analysis is carried out here by using computational fluid dynamics (CFD) and the modelling of engine's inlet and combustion chamber is done using CATIA.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0034510</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aerodynamics ; Air breathing engines ; Atmospheric models ; Boundary conditions ; Combustion chambers ; Computational fluid dynamics ; Deceleration ; Design analysis ; Engine design ; Fluid flow ; Fuel combustion ; Longitudinal waves ; Mathematical models ; Ramps ; Shock waves ; Supersonic aircraft ; Supersonic combustion ramjet engines ; Supersonic flight ; Supersonic flow ; Thickness ; Turbulent mixing</subject><ispartof>AIP Conference Proceedings, 2020, Vol.2311 (1)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0034510$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Subramaniam, Prakash</contributor><contributor>Kavitha, K R</contributor><contributor>Ganesan, S</contributor><contributor>Anish, M</contributor><contributor>Joy, Nivin</contributor><contributor>Sasipraba, T</contributor><contributor>Jayaprabakar, J</contributor><creatorcontrib>Paramasivam, Karthikeyan</creatorcontrib><creatorcontrib>Dhas, Anderson Arul Gnana</creatorcontrib><creatorcontrib>Joy, Nivin</creatorcontrib><creatorcontrib>Balakrishnan, Kanimozhi</creatorcontrib><creatorcontrib>Harsha, Vedagiri Sri</creatorcontrib><creatorcontrib>Yuvaraj, R.</creatorcontrib><title>Design and analysis of an inlet and combustion chamber of scramjet engine</title><title>AIP Conference Proceedings</title><description>Scramjet is an air-breathing engine that uses the oblique or conical shock waves generated during the hypersonic/supersonic flight, to promote compression and deceleration of free stream atmospheric air at the inlet of the scramjet. The combustion includes turbulent mixing, shock interaction and heat release in supersonic flow. The problem associated with combustion is mixing of fuel with air. The scramjet engine can be operating at Mach no. 3.4 to 5 in order to eliminate other propulsive engine. Here the number of ramps and the ramp angle is changed and the thickness and length of combustion chamber is changed. If the length and thickness of the combustion chamber is changed then the fuel will get enough time to mix with air to achieve the desirable thrust. The main objective of this project is to design a scramjet inlet and combustion chamber for efficient fuel combustion by flow analysis. This includes the variation of flow from inlet and combustion chamber by considering the boundary conditions of scramjet engine design. The flow analysis is carried out here by using computational fluid dynamics (CFD) and the modelling of engine's inlet and combustion chamber is done using CATIA.</description><subject>Aerodynamics</subject><subject>Air breathing engines</subject><subject>Atmospheric models</subject><subject>Boundary conditions</subject><subject>Combustion chambers</subject><subject>Computational fluid dynamics</subject><subject>Deceleration</subject><subject>Design analysis</subject><subject>Engine design</subject><subject>Fluid flow</subject><subject>Fuel combustion</subject><subject>Longitudinal waves</subject><subject>Mathematical models</subject><subject>Ramps</subject><subject>Shock waves</subject><subject>Supersonic aircraft</subject><subject>Supersonic combustion ramjet engines</subject><subject>Supersonic flight</subject><subject>Supersonic flow</subject><subject>Thickness</subject><subject>Turbulent mixing</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp90EtLw0AQB_BFFKzVg98g4E1Inc0-sjlKfRUKXhS8LfusW5qHu4nQb29iC948DDMwP4Y_g9A1hgUGTu7YAoBQhuEEzTBjOC855qdoBlDRvKDk4xxdpLQFKKqyFDO0enApbJpMNXYstdunkLLWj3MWmp3rfxemrfWQ-tA2mflUtXZxIslEVW9H4ppNaNwlOvNql9zVsc_R-9Pj2_IlX78-r5b367wrhOhzTjTlthKUKoeFY8YQa60iQA3zAoO3QLW23JNKO_BAORTOlVrRwprKUjJHN4e7XWy_Bpd6uW2HOEZPsqC85BWhYlK3B5VM6NUUXXYx1CruJQY5vUoyeXzVf_i7jX9QdtaTH7PwaeY</recordid><startdate>20201207</startdate><enddate>20201207</enddate><creator>Paramasivam, Karthikeyan</creator><creator>Dhas, Anderson Arul Gnana</creator><creator>Joy, Nivin</creator><creator>Balakrishnan, Kanimozhi</creator><creator>Harsha, Vedagiri Sri</creator><creator>Yuvaraj, R.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20201207</creationdate><title>Design and analysis of an inlet and combustion chamber of scramjet engine</title><author>Paramasivam, Karthikeyan ; Dhas, Anderson Arul Gnana ; Joy, Nivin ; Balakrishnan, Kanimozhi ; Harsha, Vedagiri Sri ; Yuvaraj, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p288t-63b46d9844ae18e5cc3ddda304c5f810fd04bbd6f39be0f04602ee7ba42dc9d43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerodynamics</topic><topic>Air breathing engines</topic><topic>Atmospheric models</topic><topic>Boundary conditions</topic><topic>Combustion chambers</topic><topic>Computational fluid dynamics</topic><topic>Deceleration</topic><topic>Design analysis</topic><topic>Engine design</topic><topic>Fluid flow</topic><topic>Fuel combustion</topic><topic>Longitudinal waves</topic><topic>Mathematical models</topic><topic>Ramps</topic><topic>Shock waves</topic><topic>Supersonic aircraft</topic><topic>Supersonic combustion ramjet engines</topic><topic>Supersonic flight</topic><topic>Supersonic flow</topic><topic>Thickness</topic><topic>Turbulent mixing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paramasivam, Karthikeyan</creatorcontrib><creatorcontrib>Dhas, Anderson Arul Gnana</creatorcontrib><creatorcontrib>Joy, Nivin</creatorcontrib><creatorcontrib>Balakrishnan, Kanimozhi</creatorcontrib><creatorcontrib>Harsha, Vedagiri Sri</creatorcontrib><creatorcontrib>Yuvaraj, R.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paramasivam, Karthikeyan</au><au>Dhas, Anderson Arul Gnana</au><au>Joy, Nivin</au><au>Balakrishnan, Kanimozhi</au><au>Harsha, Vedagiri Sri</au><au>Yuvaraj, R.</au><au>Subramaniam, Prakash</au><au>Kavitha, K R</au><au>Ganesan, S</au><au>Anish, M</au><au>Joy, Nivin</au><au>Sasipraba, T</au><au>Jayaprabakar, J</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Design and analysis of an inlet and combustion chamber of scramjet engine</atitle><btitle>AIP Conference Proceedings</btitle><date>2020-12-07</date><risdate>2020</risdate><volume>2311</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Scramjet is an air-breathing engine that uses the oblique or conical shock waves generated during the hypersonic/supersonic flight, to promote compression and deceleration of free stream atmospheric air at the inlet of the scramjet. The combustion includes turbulent mixing, shock interaction and heat release in supersonic flow. The problem associated with combustion is mixing of fuel with air. The scramjet engine can be operating at Mach no. 3.4 to 5 in order to eliminate other propulsive engine. Here the number of ramps and the ramp angle is changed and the thickness and length of combustion chamber is changed. If the length and thickness of the combustion chamber is changed then the fuel will get enough time to mix with air to achieve the desirable thrust. The main objective of this project is to design a scramjet inlet and combustion chamber for efficient fuel combustion by flow analysis. This includes the variation of flow from inlet and combustion chamber by considering the boundary conditions of scramjet engine design. The flow analysis is carried out here by using computational fluid dynamics (CFD) and the modelling of engine's inlet and combustion chamber is done using CATIA.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0034510</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2020, Vol.2311 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0034510 |
source | AIP Journals Complete |
subjects | Aerodynamics Air breathing engines Atmospheric models Boundary conditions Combustion chambers Computational fluid dynamics Deceleration Design analysis Engine design Fluid flow Fuel combustion Longitudinal waves Mathematical models Ramps Shock waves Supersonic aircraft Supersonic combustion ramjet engines Supersonic flight Supersonic flow Thickness Turbulent mixing |
title | Design and analysis of an inlet and combustion chamber of scramjet engine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A37%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Design%20and%20analysis%20of%20an%20inlet%20and%20combustion%20chamber%20of%20scramjet%20engine&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Paramasivam,%20Karthikeyan&rft.date=2020-12-07&rft.volume=2311&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0034510&rft_dat=%3Cproquest_scita%3E2467693484%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467693484&rft_id=info:pmid/&rfr_iscdi=true |