Design and analysis of an inlet and combustion chamber of scramjet engine

Scramjet is an air-breathing engine that uses the oblique or conical shock waves generated during the hypersonic/supersonic flight, to promote compression and deceleration of free stream atmospheric air at the inlet of the scramjet. The combustion includes turbulent mixing, shock interaction and hea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Paramasivam, Karthikeyan, Dhas, Anderson Arul Gnana, Joy, Nivin, Balakrishnan, Kanimozhi, Harsha, Vedagiri Sri, Yuvaraj, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2311
creator Paramasivam, Karthikeyan
Dhas, Anderson Arul Gnana
Joy, Nivin
Balakrishnan, Kanimozhi
Harsha, Vedagiri Sri
Yuvaraj, R.
description Scramjet is an air-breathing engine that uses the oblique or conical shock waves generated during the hypersonic/supersonic flight, to promote compression and deceleration of free stream atmospheric air at the inlet of the scramjet. The combustion includes turbulent mixing, shock interaction and heat release in supersonic flow. The problem associated with combustion is mixing of fuel with air. The scramjet engine can be operating at Mach no. 3.4 to 5 in order to eliminate other propulsive engine. Here the number of ramps and the ramp angle is changed and the thickness and length of combustion chamber is changed. If the length and thickness of the combustion chamber is changed then the fuel will get enough time to mix with air to achieve the desirable thrust. The main objective of this project is to design a scramjet inlet and combustion chamber for efficient fuel combustion by flow analysis. This includes the variation of flow from inlet and combustion chamber by considering the boundary conditions of scramjet engine design. The flow analysis is carried out here by using computational fluid dynamics (CFD) and the modelling of engine's inlet and combustion chamber is done using CATIA.
doi_str_mv 10.1063/5.0034510
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0034510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2467693484</sourcerecordid><originalsourceid>FETCH-LOGICAL-p288t-63b46d9844ae18e5cc3ddda304c5f810fd04bbd6f39be0f04602ee7ba42dc9d43</originalsourceid><addsrcrecordid>eNp90EtLw0AQB_BFFKzVg98g4E1Inc0-sjlKfRUKXhS8LfusW5qHu4nQb29iC948DDMwP4Y_g9A1hgUGTu7YAoBQhuEEzTBjOC855qdoBlDRvKDk4xxdpLQFKKqyFDO0enApbJpMNXYstdunkLLWj3MWmp3rfxemrfWQ-tA2mflUtXZxIslEVW9H4ppNaNwlOvNql9zVsc_R-9Pj2_IlX78-r5b367wrhOhzTjTlthKUKoeFY8YQa60iQA3zAoO3QLW23JNKO_BAORTOlVrRwprKUjJHN4e7XWy_Bpd6uW2HOEZPsqC85BWhYlK3B5VM6NUUXXYx1CruJQY5vUoyeXzVf_i7jX9QdtaTH7PwaeY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2467693484</pqid></control><display><type>conference_proceeding</type><title>Design and analysis of an inlet and combustion chamber of scramjet engine</title><source>AIP Journals Complete</source><creator>Paramasivam, Karthikeyan ; Dhas, Anderson Arul Gnana ; Joy, Nivin ; Balakrishnan, Kanimozhi ; Harsha, Vedagiri Sri ; Yuvaraj, R.</creator><contributor>Subramaniam, Prakash ; Kavitha, K R ; Ganesan, S ; Anish, M ; Joy, Nivin ; Sasipraba, T ; Jayaprabakar, J</contributor><creatorcontrib>Paramasivam, Karthikeyan ; Dhas, Anderson Arul Gnana ; Joy, Nivin ; Balakrishnan, Kanimozhi ; Harsha, Vedagiri Sri ; Yuvaraj, R. ; Subramaniam, Prakash ; Kavitha, K R ; Ganesan, S ; Anish, M ; Joy, Nivin ; Sasipraba, T ; Jayaprabakar, J</creatorcontrib><description>Scramjet is an air-breathing engine that uses the oblique or conical shock waves generated during the hypersonic/supersonic flight, to promote compression and deceleration of free stream atmospheric air at the inlet of the scramjet. The combustion includes turbulent mixing, shock interaction and heat release in supersonic flow. The problem associated with combustion is mixing of fuel with air. The scramjet engine can be operating at Mach no. 3.4 to 5 in order to eliminate other propulsive engine. Here the number of ramps and the ramp angle is changed and the thickness and length of combustion chamber is changed. If the length and thickness of the combustion chamber is changed then the fuel will get enough time to mix with air to achieve the desirable thrust. The main objective of this project is to design a scramjet inlet and combustion chamber for efficient fuel combustion by flow analysis. This includes the variation of flow from inlet and combustion chamber by considering the boundary conditions of scramjet engine design. The flow analysis is carried out here by using computational fluid dynamics (CFD) and the modelling of engine's inlet and combustion chamber is done using CATIA.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0034510</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aerodynamics ; Air breathing engines ; Atmospheric models ; Boundary conditions ; Combustion chambers ; Computational fluid dynamics ; Deceleration ; Design analysis ; Engine design ; Fluid flow ; Fuel combustion ; Longitudinal waves ; Mathematical models ; Ramps ; Shock waves ; Supersonic aircraft ; Supersonic combustion ramjet engines ; Supersonic flight ; Supersonic flow ; Thickness ; Turbulent mixing</subject><ispartof>AIP Conference Proceedings, 2020, Vol.2311 (1)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0034510$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Subramaniam, Prakash</contributor><contributor>Kavitha, K R</contributor><contributor>Ganesan, S</contributor><contributor>Anish, M</contributor><contributor>Joy, Nivin</contributor><contributor>Sasipraba, T</contributor><contributor>Jayaprabakar, J</contributor><creatorcontrib>Paramasivam, Karthikeyan</creatorcontrib><creatorcontrib>Dhas, Anderson Arul Gnana</creatorcontrib><creatorcontrib>Joy, Nivin</creatorcontrib><creatorcontrib>Balakrishnan, Kanimozhi</creatorcontrib><creatorcontrib>Harsha, Vedagiri Sri</creatorcontrib><creatorcontrib>Yuvaraj, R.</creatorcontrib><title>Design and analysis of an inlet and combustion chamber of scramjet engine</title><title>AIP Conference Proceedings</title><description>Scramjet is an air-breathing engine that uses the oblique or conical shock waves generated during the hypersonic/supersonic flight, to promote compression and deceleration of free stream atmospheric air at the inlet of the scramjet. The combustion includes turbulent mixing, shock interaction and heat release in supersonic flow. The problem associated with combustion is mixing of fuel with air. The scramjet engine can be operating at Mach no. 3.4 to 5 in order to eliminate other propulsive engine. Here the number of ramps and the ramp angle is changed and the thickness and length of combustion chamber is changed. If the length and thickness of the combustion chamber is changed then the fuel will get enough time to mix with air to achieve the desirable thrust. The main objective of this project is to design a scramjet inlet and combustion chamber for efficient fuel combustion by flow analysis. This includes the variation of flow from inlet and combustion chamber by considering the boundary conditions of scramjet engine design. The flow analysis is carried out here by using computational fluid dynamics (CFD) and the modelling of engine's inlet and combustion chamber is done using CATIA.</description><subject>Aerodynamics</subject><subject>Air breathing engines</subject><subject>Atmospheric models</subject><subject>Boundary conditions</subject><subject>Combustion chambers</subject><subject>Computational fluid dynamics</subject><subject>Deceleration</subject><subject>Design analysis</subject><subject>Engine design</subject><subject>Fluid flow</subject><subject>Fuel combustion</subject><subject>Longitudinal waves</subject><subject>Mathematical models</subject><subject>Ramps</subject><subject>Shock waves</subject><subject>Supersonic aircraft</subject><subject>Supersonic combustion ramjet engines</subject><subject>Supersonic flight</subject><subject>Supersonic flow</subject><subject>Thickness</subject><subject>Turbulent mixing</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp90EtLw0AQB_BFFKzVg98g4E1Inc0-sjlKfRUKXhS8LfusW5qHu4nQb29iC948DDMwP4Y_g9A1hgUGTu7YAoBQhuEEzTBjOC855qdoBlDRvKDk4xxdpLQFKKqyFDO0enApbJpMNXYstdunkLLWj3MWmp3rfxemrfWQ-tA2mflUtXZxIslEVW9H4ppNaNwlOvNql9zVsc_R-9Pj2_IlX78-r5b367wrhOhzTjTlthKUKoeFY8YQa60iQA3zAoO3QLW23JNKO_BAORTOlVrRwprKUjJHN4e7XWy_Bpd6uW2HOEZPsqC85BWhYlK3B5VM6NUUXXYx1CruJQY5vUoyeXzVf_i7jX9QdtaTH7PwaeY</recordid><startdate>20201207</startdate><enddate>20201207</enddate><creator>Paramasivam, Karthikeyan</creator><creator>Dhas, Anderson Arul Gnana</creator><creator>Joy, Nivin</creator><creator>Balakrishnan, Kanimozhi</creator><creator>Harsha, Vedagiri Sri</creator><creator>Yuvaraj, R.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20201207</creationdate><title>Design and analysis of an inlet and combustion chamber of scramjet engine</title><author>Paramasivam, Karthikeyan ; Dhas, Anderson Arul Gnana ; Joy, Nivin ; Balakrishnan, Kanimozhi ; Harsha, Vedagiri Sri ; Yuvaraj, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p288t-63b46d9844ae18e5cc3ddda304c5f810fd04bbd6f39be0f04602ee7ba42dc9d43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerodynamics</topic><topic>Air breathing engines</topic><topic>Atmospheric models</topic><topic>Boundary conditions</topic><topic>Combustion chambers</topic><topic>Computational fluid dynamics</topic><topic>Deceleration</topic><topic>Design analysis</topic><topic>Engine design</topic><topic>Fluid flow</topic><topic>Fuel combustion</topic><topic>Longitudinal waves</topic><topic>Mathematical models</topic><topic>Ramps</topic><topic>Shock waves</topic><topic>Supersonic aircraft</topic><topic>Supersonic combustion ramjet engines</topic><topic>Supersonic flight</topic><topic>Supersonic flow</topic><topic>Thickness</topic><topic>Turbulent mixing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paramasivam, Karthikeyan</creatorcontrib><creatorcontrib>Dhas, Anderson Arul Gnana</creatorcontrib><creatorcontrib>Joy, Nivin</creatorcontrib><creatorcontrib>Balakrishnan, Kanimozhi</creatorcontrib><creatorcontrib>Harsha, Vedagiri Sri</creatorcontrib><creatorcontrib>Yuvaraj, R.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paramasivam, Karthikeyan</au><au>Dhas, Anderson Arul Gnana</au><au>Joy, Nivin</au><au>Balakrishnan, Kanimozhi</au><au>Harsha, Vedagiri Sri</au><au>Yuvaraj, R.</au><au>Subramaniam, Prakash</au><au>Kavitha, K R</au><au>Ganesan, S</au><au>Anish, M</au><au>Joy, Nivin</au><au>Sasipraba, T</au><au>Jayaprabakar, J</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Design and analysis of an inlet and combustion chamber of scramjet engine</atitle><btitle>AIP Conference Proceedings</btitle><date>2020-12-07</date><risdate>2020</risdate><volume>2311</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Scramjet is an air-breathing engine that uses the oblique or conical shock waves generated during the hypersonic/supersonic flight, to promote compression and deceleration of free stream atmospheric air at the inlet of the scramjet. The combustion includes turbulent mixing, shock interaction and heat release in supersonic flow. The problem associated with combustion is mixing of fuel with air. The scramjet engine can be operating at Mach no. 3.4 to 5 in order to eliminate other propulsive engine. Here the number of ramps and the ramp angle is changed and the thickness and length of combustion chamber is changed. If the length and thickness of the combustion chamber is changed then the fuel will get enough time to mix with air to achieve the desirable thrust. The main objective of this project is to design a scramjet inlet and combustion chamber for efficient fuel combustion by flow analysis. This includes the variation of flow from inlet and combustion chamber by considering the boundary conditions of scramjet engine design. The flow analysis is carried out here by using computational fluid dynamics (CFD) and the modelling of engine's inlet and combustion chamber is done using CATIA.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0034510</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2020, Vol.2311 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0034510
source AIP Journals Complete
subjects Aerodynamics
Air breathing engines
Atmospheric models
Boundary conditions
Combustion chambers
Computational fluid dynamics
Deceleration
Design analysis
Engine design
Fluid flow
Fuel combustion
Longitudinal waves
Mathematical models
Ramps
Shock waves
Supersonic aircraft
Supersonic combustion ramjet engines
Supersonic flight
Supersonic flow
Thickness
Turbulent mixing
title Design and analysis of an inlet and combustion chamber of scramjet engine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A37%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Design%20and%20analysis%20of%20an%20inlet%20and%20combustion%20chamber%20of%20scramjet%20engine&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Paramasivam,%20Karthikeyan&rft.date=2020-12-07&rft.volume=2311&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0034510&rft_dat=%3Cproquest_scita%3E2467693484%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467693484&rft_id=info:pmid/&rfr_iscdi=true