Liouville theorem of D-solutions to the stationary magnetohydrodynamics system in a slab

In this paper, we study Liouville theorems of D-solutions to the stationary magnetohydrodynamic system in a slab. We will prove trivialness of the velocity and the magnetic field with various boundary conditions. In some boundary conditions, the additional assumption that the horizontal angular comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2021-07, Vol.62 (7)
1. Verfasser: Pan, Xinghong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Journal of mathematical physics
container_volume 62
creator Pan, Xinghong
description In this paper, we study Liouville theorems of D-solutions to the stationary magnetohydrodynamic system in a slab. We will prove trivialness of the velocity and the magnetic field with various boundary conditions. In some boundary conditions, the additional assumption that the horizontal angular component(s) of the velocity or (and) the magnetic field is (are) axially symmetric is needed. More precisely, five types of boundary conditions will be considered: the vertical periodic boundary condition for the velocity and the magnetic field, the Navier-slip boundary condition for the velocity, the perfectly conducting or insulating boundary condition for the magnetic field, the non-slip boundary condition for the velocity, and the perfectly conducting or insulating boundary condition for the magnetic field. One of our innovations is that we do not impose finite Dirichlet integral assumption on the magnetic field compared with previous works.
doi_str_mv 10.1063/5.0031564
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0031564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2547150051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-47af57b5d4f18801573a7890ecbf06d618f9e38b26a648bdb5547db31266ff623</originalsourceid><addsrcrecordid>eNqd0EtLxDAQAOAgCq6rB_9BwJNC10ma1x5lfcKCFwVvIW0Tt0vbrEm60H9vly549zQM880MMwhdE1gQEPk9XwDkhAt2gmYE1DKTgqtTNAOgNKNMqXN0EeMWgBDF2Ax9rWvf7-umsThtrA-2xd7hxyz6pk-17yJO_lDBMZlDbsKAW_Pd2eQ3QxV8NXSmrcuI4xDT2Fx32ODYmOISnTnTRHt1jHP0-fz0sXrN1u8vb6uHdVZSLlPGpHFcFrxijigFhMvcSLUEWxYORCWIckubq4IKI5gqqoJzJqsiJ1QI5wTN5-hmmrsL_qe3Memt70M3rtR0pIQDcDKq20mVwccYrNO7ULfjMZqAPjxOc3183GjvJhvLejr6f3jvwx_Uu8rlv2uxfC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547150051</pqid></control><display><type>article</type><title>Liouville theorem of D-solutions to the stationary magnetohydrodynamics system in a slab</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Pan, Xinghong</creator><creatorcontrib>Pan, Xinghong</creatorcontrib><description>In this paper, we study Liouville theorems of D-solutions to the stationary magnetohydrodynamic system in a slab. We will prove trivialness of the velocity and the magnetic field with various boundary conditions. In some boundary conditions, the additional assumption that the horizontal angular component(s) of the velocity or (and) the magnetic field is (are) axially symmetric is needed. More precisely, five types of boundary conditions will be considered: the vertical periodic boundary condition for the velocity and the magnetic field, the Navier-slip boundary condition for the velocity, the perfectly conducting or insulating boundary condition for the magnetic field, the non-slip boundary condition for the velocity, and the perfectly conducting or insulating boundary condition for the magnetic field. One of our innovations is that we do not impose finite Dirichlet integral assumption on the magnetic field compared with previous works.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0031564</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Angular velocity ; Boundary conditions ; Dirichlet problem ; Electrons ; Fluid dynamics ; Fluid flow ; Liouville theorem ; Magnetic fields ; Magnetism ; Magnetohydrodynamics ; Physics ; Slip ; Velocity</subject><ispartof>Journal of mathematical physics, 2021-07, Vol.62 (7)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-47af57b5d4f18801573a7890ecbf06d618f9e38b26a648bdb5547db31266ff623</citedby><cites>FETCH-LOGICAL-c257t-47af57b5d4f18801573a7890ecbf06d618f9e38b26a648bdb5547db31266ff623</cites><orcidid>0000-0002-9715-9506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0031564$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids></links><search><creatorcontrib>Pan, Xinghong</creatorcontrib><title>Liouville theorem of D-solutions to the stationary magnetohydrodynamics system in a slab</title><title>Journal of mathematical physics</title><description>In this paper, we study Liouville theorems of D-solutions to the stationary magnetohydrodynamic system in a slab. We will prove trivialness of the velocity and the magnetic field with various boundary conditions. In some boundary conditions, the additional assumption that the horizontal angular component(s) of the velocity or (and) the magnetic field is (are) axially symmetric is needed. More precisely, five types of boundary conditions will be considered: the vertical periodic boundary condition for the velocity and the magnetic field, the Navier-slip boundary condition for the velocity, the perfectly conducting or insulating boundary condition for the magnetic field, the non-slip boundary condition for the velocity, and the perfectly conducting or insulating boundary condition for the magnetic field. One of our innovations is that we do not impose finite Dirichlet integral assumption on the magnetic field compared with previous works.</description><subject>Angular velocity</subject><subject>Boundary conditions</subject><subject>Dirichlet problem</subject><subject>Electrons</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Liouville theorem</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Magnetohydrodynamics</subject><subject>Physics</subject><subject>Slip</subject><subject>Velocity</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0EtLxDAQAOAgCq6rB_9BwJNC10ma1x5lfcKCFwVvIW0Tt0vbrEm60H9vly549zQM880MMwhdE1gQEPk9XwDkhAt2gmYE1DKTgqtTNAOgNKNMqXN0EeMWgBDF2Ax9rWvf7-umsThtrA-2xd7hxyz6pk-17yJO_lDBMZlDbsKAW_Pd2eQ3QxV8NXSmrcuI4xDT2Fx32ODYmOISnTnTRHt1jHP0-fz0sXrN1u8vb6uHdVZSLlPGpHFcFrxijigFhMvcSLUEWxYORCWIckubq4IKI5gqqoJzJqsiJ1QI5wTN5-hmmrsL_qe3Memt70M3rtR0pIQDcDKq20mVwccYrNO7ULfjMZqAPjxOc3183GjvJhvLejr6f3jvwx_Uu8rlv2uxfC4</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Pan, Xinghong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9715-9506</orcidid></search><sort><creationdate>20210701</creationdate><title>Liouville theorem of D-solutions to the stationary magnetohydrodynamics system in a slab</title><author>Pan, Xinghong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-47af57b5d4f18801573a7890ecbf06d618f9e38b26a648bdb5547db31266ff623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Angular velocity</topic><topic>Boundary conditions</topic><topic>Dirichlet problem</topic><topic>Electrons</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Liouville theorem</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Magnetohydrodynamics</topic><topic>Physics</topic><topic>Slip</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Xinghong</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Xinghong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liouville theorem of D-solutions to the stationary magnetohydrodynamics system in a slab</atitle><jtitle>Journal of mathematical physics</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>62</volume><issue>7</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>In this paper, we study Liouville theorems of D-solutions to the stationary magnetohydrodynamic system in a slab. We will prove trivialness of the velocity and the magnetic field with various boundary conditions. In some boundary conditions, the additional assumption that the horizontal angular component(s) of the velocity or (and) the magnetic field is (are) axially symmetric is needed. More precisely, five types of boundary conditions will be considered: the vertical periodic boundary condition for the velocity and the magnetic field, the Navier-slip boundary condition for the velocity, the perfectly conducting or insulating boundary condition for the magnetic field, the non-slip boundary condition for the velocity, and the perfectly conducting or insulating boundary condition for the magnetic field. One of our innovations is that we do not impose finite Dirichlet integral assumption on the magnetic field compared with previous works.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0031564</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9715-9506</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2021-07, Vol.62 (7)
issn 0022-2488
1089-7658
language eng
recordid cdi_scitation_primary_10_1063_5_0031564
source AIP Journals Complete; Alma/SFX Local Collection
subjects Angular velocity
Boundary conditions
Dirichlet problem
Electrons
Fluid dynamics
Fluid flow
Liouville theorem
Magnetic fields
Magnetism
Magnetohydrodynamics
Physics
Slip
Velocity
title Liouville theorem of D-solutions to the stationary magnetohydrodynamics system in a slab
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A23%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liouville%20theorem%20of%20D-solutions%20to%20the%20stationary%20magnetohydrodynamics%20system%20in%20a%20slab&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Pan,%20Xinghong&rft.date=2021-07-01&rft.volume=62&rft.issue=7&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0031564&rft_dat=%3Cproquest_scita%3E2547150051%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547150051&rft_id=info:pmid/&rfr_iscdi=true