A combined numerical and experimental study to elucidate primary breakup dynamics in liquid metal droplet-on-demand printing
Droplet-on-demand liquid metal jetting is emerging as a powerful technology for the additive manufacturing of metallic parts. The success of this method hinges on overcoming several technological challenges. The principal one among these challenges is the controlled repeatable ejection of single uni...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2020-11, Vol.32 (11) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 32 |
creator | Beck, Victor A. Watkins, Nicholas N. Ashby, Ava S. Martin, Aiden A. Paul, Phillip H. Jeffries, Jason R. Pascall, Andrew J. |
description | Droplet-on-demand liquid metal jetting is emerging as a powerful technology for the additive manufacturing of metallic parts. The success of this method hinges on overcoming several technological challenges. The principal one among these challenges is the controlled repeatable ejection of single uniform droplets. Due to the high density and surface tension of liquid metals, the droplet ejection process occurs near the minimal extremes of the printability phase diagram, defined by acceptable ranges for the Weber (We) and Ohnesorge (Oh) numbers. In this work, we experimentally demonstrate the satellite-free ejection of pneumatically actuated molten tin droplets in this extreme corner of printability and use a combination of high-speed video analysis and volume-of-fluid modeling to elucidate the droplet dynamics. While the simulations at low Oh and We can correctly describe several aspects of the breakup process, such as an increasing tail and pinch-point near the nozzle, no single parameter set can completely capture the droplet shape at breakup. Instead, the experimental droplet dynamics appear to include features from both high and low Oh breakup. This disagreement is ascribed to the incomplete description of the droplet ejection process including wetting and exit effects near the nozzle opening and surface effects such as transient cooling and oxide formation. |
doi_str_mv | 10.1063/5.0029438 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0029438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2464232616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-2fcb4cb39b5e21353fa2b4729ca1855c1b5525bb51e2c6f1056b944f684c93b63</originalsourceid><addsrcrecordid>eNp9kUtLw0AQx4MoWKsHv8GiJ4XUfTc5luILCl70vOxuJro12U2zG7DghzehPXua12_-M8xk2TXBC4IlexALjGnJWXGSzQguynwppTyd_CXOpWTkPLuIcYsxZiWVs-x3hWxojfNQIT-00DurG6R9heCnG6MWfBoTMQ3VHqWAoBmsq3QC1I1F3e-R6UF_Dx2q9l63zkbkPGrcbnAVamHqrfrQNZDy4PMK2kl6bPXJ-c_L7KzWTYSro51nH0-P7-uXfPP2_LpebXLLKU45ra3h1rDSCKCECVZraviSllaTQghLjBBUGCMIUCtrgoU0Jee1LLgtmZFsnt0cdENMTkXrEtgvG7wHmxRZUk55MUK3B6jrw26AmNQ2DL0f91KUS04ZlWSSujtQtg8x9lCr4x0UwWr6gBLq-IGRvT-w00SdXPD_wH8bHIad</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464232616</pqid></control><display><type>article</type><title>A combined numerical and experimental study to elucidate primary breakup dynamics in liquid metal droplet-on-demand printing</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Beck, Victor A. ; Watkins, Nicholas N. ; Ashby, Ava S. ; Martin, Aiden A. ; Paul, Phillip H. ; Jeffries, Jason R. ; Pascall, Andrew J.</creator><creatorcontrib>Beck, Victor A. ; Watkins, Nicholas N. ; Ashby, Ava S. ; Martin, Aiden A. ; Paul, Phillip H. ; Jeffries, Jason R. ; Pascall, Andrew J.</creatorcontrib><description>Droplet-on-demand liquid metal jetting is emerging as a powerful technology for the additive manufacturing of metallic parts. The success of this method hinges on overcoming several technological challenges. The principal one among these challenges is the controlled repeatable ejection of single uniform droplets. Due to the high density and surface tension of liquid metals, the droplet ejection process occurs near the minimal extremes of the printability phase diagram, defined by acceptable ranges for the Weber (We) and Ohnesorge (Oh) numbers. In this work, we experimentally demonstrate the satellite-free ejection of pneumatically actuated molten tin droplets in this extreme corner of printability and use a combination of high-speed video analysis and volume-of-fluid modeling to elucidate the droplet dynamics. While the simulations at low Oh and We can correctly describe several aspects of the breakup process, such as an increasing tail and pinch-point near the nozzle, no single parameter set can completely capture the droplet shape at breakup. Instead, the experimental droplet dynamics appear to include features from both high and low Oh breakup. This disagreement is ascribed to the incomplete description of the droplet ejection process including wetting and exit effects near the nozzle opening and surface effects such as transient cooling and oxide formation.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0029438</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Breakup ; Cooling effects ; Droplets ; Ejection ; Fluid dynamics ; Liquid metals ; Nozzles ; Phase diagrams ; Physics ; Surface tension ; Wetting</subject><ispartof>Physics of fluids (1994), 2020-11, Vol.32 (11)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-2fcb4cb39b5e21353fa2b4729ca1855c1b5525bb51e2c6f1056b944f684c93b63</citedby><cites>FETCH-LOGICAL-c420t-2fcb4cb39b5e21353fa2b4729ca1855c1b5525bb51e2c6f1056b944f684c93b63</cites><orcidid>0000-0002-5466-1037 ; 0000-0002-7933-8690 ; 0000-0003-2362-5524 ; 0000-0001-5597-8944 ; 0000-0002-0625-9545 ; 0000000206259545 ; 0000000323625524 ; 0000000155978944 ; 0000000279338690 ; 0000000254661037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,790,881,4498,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1724248$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Beck, Victor A.</creatorcontrib><creatorcontrib>Watkins, Nicholas N.</creatorcontrib><creatorcontrib>Ashby, Ava S.</creatorcontrib><creatorcontrib>Martin, Aiden A.</creatorcontrib><creatorcontrib>Paul, Phillip H.</creatorcontrib><creatorcontrib>Jeffries, Jason R.</creatorcontrib><creatorcontrib>Pascall, Andrew J.</creatorcontrib><title>A combined numerical and experimental study to elucidate primary breakup dynamics in liquid metal droplet-on-demand printing</title><title>Physics of fluids (1994)</title><description>Droplet-on-demand liquid metal jetting is emerging as a powerful technology for the additive manufacturing of metallic parts. The success of this method hinges on overcoming several technological challenges. The principal one among these challenges is the controlled repeatable ejection of single uniform droplets. Due to the high density and surface tension of liquid metals, the droplet ejection process occurs near the minimal extremes of the printability phase diagram, defined by acceptable ranges for the Weber (We) and Ohnesorge (Oh) numbers. In this work, we experimentally demonstrate the satellite-free ejection of pneumatically actuated molten tin droplets in this extreme corner of printability and use a combination of high-speed video analysis and volume-of-fluid modeling to elucidate the droplet dynamics. While the simulations at low Oh and We can correctly describe several aspects of the breakup process, such as an increasing tail and pinch-point near the nozzle, no single parameter set can completely capture the droplet shape at breakup. Instead, the experimental droplet dynamics appear to include features from both high and low Oh breakup. This disagreement is ascribed to the incomplete description of the droplet ejection process including wetting and exit effects near the nozzle opening and surface effects such as transient cooling and oxide formation.</description><subject>Breakup</subject><subject>Cooling effects</subject><subject>Droplets</subject><subject>Ejection</subject><subject>Fluid dynamics</subject><subject>Liquid metals</subject><subject>Nozzles</subject><subject>Phase diagrams</subject><subject>Physics</subject><subject>Surface tension</subject><subject>Wetting</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLw0AQx4MoWKsHv8GiJ4XUfTc5luILCl70vOxuJro12U2zG7DghzehPXua12_-M8xk2TXBC4IlexALjGnJWXGSzQguynwppTyd_CXOpWTkPLuIcYsxZiWVs-x3hWxojfNQIT-00DurG6R9heCnG6MWfBoTMQ3VHqWAoBmsq3QC1I1F3e-R6UF_Dx2q9l63zkbkPGrcbnAVamHqrfrQNZDy4PMK2kl6bPXJ-c_L7KzWTYSro51nH0-P7-uXfPP2_LpebXLLKU45ra3h1rDSCKCECVZraviSllaTQghLjBBUGCMIUCtrgoU0Jee1LLgtmZFsnt0cdENMTkXrEtgvG7wHmxRZUk55MUK3B6jrw26AmNQ2DL0f91KUS04ZlWSSujtQtg8x9lCr4x0UwWr6gBLq-IGRvT-w00SdXPD_wH8bHIad</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Beck, Victor A.</creator><creator>Watkins, Nicholas N.</creator><creator>Ashby, Ava S.</creator><creator>Martin, Aiden A.</creator><creator>Paul, Phillip H.</creator><creator>Jeffries, Jason R.</creator><creator>Pascall, Andrew J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5466-1037</orcidid><orcidid>https://orcid.org/0000-0002-7933-8690</orcidid><orcidid>https://orcid.org/0000-0003-2362-5524</orcidid><orcidid>https://orcid.org/0000-0001-5597-8944</orcidid><orcidid>https://orcid.org/0000-0002-0625-9545</orcidid><orcidid>https://orcid.org/0000000206259545</orcidid><orcidid>https://orcid.org/0000000323625524</orcidid><orcidid>https://orcid.org/0000000155978944</orcidid><orcidid>https://orcid.org/0000000279338690</orcidid><orcidid>https://orcid.org/0000000254661037</orcidid></search><sort><creationdate>20201101</creationdate><title>A combined numerical and experimental study to elucidate primary breakup dynamics in liquid metal droplet-on-demand printing</title><author>Beck, Victor A. ; Watkins, Nicholas N. ; Ashby, Ava S. ; Martin, Aiden A. ; Paul, Phillip H. ; Jeffries, Jason R. ; Pascall, Andrew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-2fcb4cb39b5e21353fa2b4729ca1855c1b5525bb51e2c6f1056b944f684c93b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Breakup</topic><topic>Cooling effects</topic><topic>Droplets</topic><topic>Ejection</topic><topic>Fluid dynamics</topic><topic>Liquid metals</topic><topic>Nozzles</topic><topic>Phase diagrams</topic><topic>Physics</topic><topic>Surface tension</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beck, Victor A.</creatorcontrib><creatorcontrib>Watkins, Nicholas N.</creatorcontrib><creatorcontrib>Ashby, Ava S.</creatorcontrib><creatorcontrib>Martin, Aiden A.</creatorcontrib><creatorcontrib>Paul, Phillip H.</creatorcontrib><creatorcontrib>Jeffries, Jason R.</creatorcontrib><creatorcontrib>Pascall, Andrew J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beck, Victor A.</au><au>Watkins, Nicholas N.</au><au>Ashby, Ava S.</au><au>Martin, Aiden A.</au><au>Paul, Phillip H.</au><au>Jeffries, Jason R.</au><au>Pascall, Andrew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A combined numerical and experimental study to elucidate primary breakup dynamics in liquid metal droplet-on-demand printing</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>32</volume><issue>11</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Droplet-on-demand liquid metal jetting is emerging as a powerful technology for the additive manufacturing of metallic parts. The success of this method hinges on overcoming several technological challenges. The principal one among these challenges is the controlled repeatable ejection of single uniform droplets. Due to the high density and surface tension of liquid metals, the droplet ejection process occurs near the minimal extremes of the printability phase diagram, defined by acceptable ranges for the Weber (We) and Ohnesorge (Oh) numbers. In this work, we experimentally demonstrate the satellite-free ejection of pneumatically actuated molten tin droplets in this extreme corner of printability and use a combination of high-speed video analysis and volume-of-fluid modeling to elucidate the droplet dynamics. While the simulations at low Oh and We can correctly describe several aspects of the breakup process, such as an increasing tail and pinch-point near the nozzle, no single parameter set can completely capture the droplet shape at breakup. Instead, the experimental droplet dynamics appear to include features from both high and low Oh breakup. This disagreement is ascribed to the incomplete description of the droplet ejection process including wetting and exit effects near the nozzle opening and surface effects such as transient cooling and oxide formation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0029438</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5466-1037</orcidid><orcidid>https://orcid.org/0000-0002-7933-8690</orcidid><orcidid>https://orcid.org/0000-0003-2362-5524</orcidid><orcidid>https://orcid.org/0000-0001-5597-8944</orcidid><orcidid>https://orcid.org/0000-0002-0625-9545</orcidid><orcidid>https://orcid.org/0000000206259545</orcidid><orcidid>https://orcid.org/0000000323625524</orcidid><orcidid>https://orcid.org/0000000155978944</orcidid><orcidid>https://orcid.org/0000000279338690</orcidid><orcidid>https://orcid.org/0000000254661037</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2020-11, Vol.32 (11) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0029438 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Breakup Cooling effects Droplets Ejection Fluid dynamics Liquid metals Nozzles Phase diagrams Physics Surface tension Wetting |
title | A combined numerical and experimental study to elucidate primary breakup dynamics in liquid metal droplet-on-demand printing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A29%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20combined%20numerical%20and%20experimental%20study%20to%20elucidate%20primary%20breakup%20dynamics%20in%20liquid%20metal%20droplet-on-demand%20printing&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Beck,%20Victor%20A.&rft.date=2020-11-01&rft.volume=32&rft.issue=11&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0029438&rft_dat=%3Cproquest_scita%3E2464232616%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464232616&rft_id=info:pmid/&rfr_iscdi=true |