Creation of large temperature anisotropies in a laboratory plasma
Ion temperature anisotropy in an expanding magnetized plasma is investigated using laser induced fluorescence. Parallel and perpendicular ion velocity distribution functions (IVDFs) were measured simultaneously with high spatial resolution in the expanding plasma. Large ion temperature anisotropies...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2020-12, Vol.27 (12) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 27 |
creator | Beatty, C. B. Steinberger, T. E. Aguirre, E. M. Beatty, R. A. Klein, K. G. McLaughlin, J. W. Neal, L. Scime, E. E. |
description | Ion temperature anisotropy in an expanding magnetized plasma is investigated using laser induced fluorescence. Parallel and perpendicular ion velocity distribution functions (IVDFs) were measured simultaneously with high spatial resolution in the expanding plasma. Large ion temperature anisotropies (
T
⊥
i
/
T
∥
i
∼
10) are observed in a conical region at the periphery of the expanding plasma plume. A simple 2D Boris stepper model that incorporates the measured electric field structure is able to reproduce the gross features of the measured perpendicular IVDFs. A Nyquist stability analysis of the measured IVDFs suggests that multiple instabilities with
k
⊥
ρ
i
∼
1 and
k
|
|
ρ
i
∼
0.2 are likely to be excited in these plasmas. |
doi_str_mv | 10.1063/5.0029315 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0029315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2465873197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-5fcb9df71a36bb002031863d54053bb4ba4fb6118b4af8da76d6e50807fb17033</originalsourceid><addsrcrecordid>eNqd0MtKAzEUBuAgCtbqwjcIulKYetJMLrMsxRsU3Ci4C0km0SntZExSoW_vjFNw7yqBfJz850foksCMAKd3bAYwryhhR2hCQFaF4KI8Hu4CCs7L91N0ltIaAErO5AQtltHp3IQWB483On44nN22c1HnXXRYt00KOYaucQk3Lda9MaF_DHGPu41OW32OTrzeJHdxOKfo7eH-dflUrF4en5eLVWGprHLBvDVV7QXRlBvThwRKJKc1K4FRY0qjS284IdKU2staC15zx0CC8IYIoHSKrsa5IeVGJdtkZz9taFtnsyKCMVmxHl2PqIvha-dSVuuwi22fS82HhQUllejVzahsDClF51UXm62Oe0VADTUqpg419vZ2tMOPv039D3-H-AdVV3v6A47pf4Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465873197</pqid></control><display><type>article</type><title>Creation of large temperature anisotropies in a laboratory plasma</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Beatty, C. B. ; Steinberger, T. E. ; Aguirre, E. M. ; Beatty, R. A. ; Klein, K. G. ; McLaughlin, J. W. ; Neal, L. ; Scime, E. E.</creator><creatorcontrib>Beatty, C. B. ; Steinberger, T. E. ; Aguirre, E. M. ; Beatty, R. A. ; Klein, K. G. ; McLaughlin, J. W. ; Neal, L. ; Scime, E. E. ; West Virginia Univ., Morgantown, WV (United States)</creatorcontrib><description>Ion temperature anisotropy in an expanding magnetized plasma is investigated using laser induced fluorescence. Parallel and perpendicular ion velocity distribution functions (IVDFs) were measured simultaneously with high spatial resolution in the expanding plasma. Large ion temperature anisotropies (
T
⊥
i
/
T
∥
i
∼
10) are observed in a conical region at the periphery of the expanding plasma plume. A simple 2D Boris stepper model that incorporates the measured electric field structure is able to reproduce the gross features of the measured perpendicular IVDFs. A Nyquist stability analysis of the measured IVDFs suggests that multiple instabilities with
k
⊥
ρ
i
∼
1 and
k
|
|
ρ
i
∼
0.2 are likely to be excited in these plasmas.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0029315</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Anisotropy ; Data visualization ; Distribution functions ; Electric fields ; Expanding plasmas ; Ion temperature ; Ion velocity ; Laser induced fluorescence ; Plasma ; Plasma heating ; Plasma instabilities ; Plasma physics ; Plasma properties and parameters ; Plasma sheaths ; Plasma sources ; Plasma waves ; Solar wind ; Spatial resolution ; Stability analysis ; Two dimensional models ; Velocity distribution</subject><ispartof>Physics of plasmas, 2020-12, Vol.27 (12)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-5fcb9df71a36bb002031863d54053bb4ba4fb6118b4af8da76d6e50807fb17033</citedby><cites>FETCH-LOGICAL-c389t-5fcb9df71a36bb002031863d54053bb4ba4fb6118b4af8da76d6e50807fb17033</cites><orcidid>0000-0002-7445-7869 ; 0000-0003-2227-4064 ; 0000-0003-4128-492X ; 0000-0002-5766-1462 ; 0000-0001-6038-1923 ; 0000-0002-6770-1827 ; 0000000267701827 ; 0000000322274064 ; 0000000257661462 ; 0000000160381923 ; 0000000274457869 ; 000000034128492X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0029315$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76353</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1755895$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Beatty, C. B.</creatorcontrib><creatorcontrib>Steinberger, T. E.</creatorcontrib><creatorcontrib>Aguirre, E. M.</creatorcontrib><creatorcontrib>Beatty, R. A.</creatorcontrib><creatorcontrib>Klein, K. G.</creatorcontrib><creatorcontrib>McLaughlin, J. W.</creatorcontrib><creatorcontrib>Neal, L.</creatorcontrib><creatorcontrib>Scime, E. E.</creatorcontrib><creatorcontrib>West Virginia Univ., Morgantown, WV (United States)</creatorcontrib><title>Creation of large temperature anisotropies in a laboratory plasma</title><title>Physics of plasmas</title><description>Ion temperature anisotropy in an expanding magnetized plasma is investigated using laser induced fluorescence. Parallel and perpendicular ion velocity distribution functions (IVDFs) were measured simultaneously with high spatial resolution in the expanding plasma. Large ion temperature anisotropies (
T
⊥
i
/
T
∥
i
∼
10) are observed in a conical region at the periphery of the expanding plasma plume. A simple 2D Boris stepper model that incorporates the measured electric field structure is able to reproduce the gross features of the measured perpendicular IVDFs. A Nyquist stability analysis of the measured IVDFs suggests that multiple instabilities with
k
⊥
ρ
i
∼
1 and
k
|
|
ρ
i
∼
0.2 are likely to be excited in these plasmas.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Anisotropy</subject><subject>Data visualization</subject><subject>Distribution functions</subject><subject>Electric fields</subject><subject>Expanding plasmas</subject><subject>Ion temperature</subject><subject>Ion velocity</subject><subject>Laser induced fluorescence</subject><subject>Plasma</subject><subject>Plasma heating</subject><subject>Plasma instabilities</subject><subject>Plasma physics</subject><subject>Plasma properties and parameters</subject><subject>Plasma sheaths</subject><subject>Plasma sources</subject><subject>Plasma waves</subject><subject>Solar wind</subject><subject>Spatial resolution</subject><subject>Stability analysis</subject><subject>Two dimensional models</subject><subject>Velocity distribution</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqd0MtKAzEUBuAgCtbqwjcIulKYetJMLrMsxRsU3Ci4C0km0SntZExSoW_vjFNw7yqBfJz850foksCMAKd3bAYwryhhR2hCQFaF4KI8Hu4CCs7L91N0ltIaAErO5AQtltHp3IQWB483On44nN22c1HnXXRYt00KOYaucQk3Lda9MaF_DHGPu41OW32OTrzeJHdxOKfo7eH-dflUrF4en5eLVWGprHLBvDVV7QXRlBvThwRKJKc1K4FRY0qjS284IdKU2staC15zx0CC8IYIoHSKrsa5IeVGJdtkZz9taFtnsyKCMVmxHl2PqIvha-dSVuuwi22fS82HhQUllejVzahsDClF51UXm62Oe0VADTUqpg419vZ2tMOPv039D3-H-AdVV3v6A47pf4Y</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Beatty, C. B.</creator><creator>Steinberger, T. E.</creator><creator>Aguirre, E. M.</creator><creator>Beatty, R. A.</creator><creator>Klein, K. G.</creator><creator>McLaughlin, J. W.</creator><creator>Neal, L.</creator><creator>Scime, E. E.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7445-7869</orcidid><orcidid>https://orcid.org/0000-0003-2227-4064</orcidid><orcidid>https://orcid.org/0000-0003-4128-492X</orcidid><orcidid>https://orcid.org/0000-0002-5766-1462</orcidid><orcidid>https://orcid.org/0000-0001-6038-1923</orcidid><orcidid>https://orcid.org/0000-0002-6770-1827</orcidid><orcidid>https://orcid.org/0000000267701827</orcidid><orcidid>https://orcid.org/0000000322274064</orcidid><orcidid>https://orcid.org/0000000257661462</orcidid><orcidid>https://orcid.org/0000000160381923</orcidid><orcidid>https://orcid.org/0000000274457869</orcidid><orcidid>https://orcid.org/000000034128492X</orcidid></search><sort><creationdate>202012</creationdate><title>Creation of large temperature anisotropies in a laboratory plasma</title><author>Beatty, C. B. ; Steinberger, T. E. ; Aguirre, E. M. ; Beatty, R. A. ; Klein, K. G. ; McLaughlin, J. W. ; Neal, L. ; Scime, E. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-5fcb9df71a36bb002031863d54053bb4ba4fb6118b4af8da76d6e50807fb17033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Anisotropy</topic><topic>Data visualization</topic><topic>Distribution functions</topic><topic>Electric fields</topic><topic>Expanding plasmas</topic><topic>Ion temperature</topic><topic>Ion velocity</topic><topic>Laser induced fluorescence</topic><topic>Plasma</topic><topic>Plasma heating</topic><topic>Plasma instabilities</topic><topic>Plasma physics</topic><topic>Plasma properties and parameters</topic><topic>Plasma sheaths</topic><topic>Plasma sources</topic><topic>Plasma waves</topic><topic>Solar wind</topic><topic>Spatial resolution</topic><topic>Stability analysis</topic><topic>Two dimensional models</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beatty, C. B.</creatorcontrib><creatorcontrib>Steinberger, T. E.</creatorcontrib><creatorcontrib>Aguirre, E. M.</creatorcontrib><creatorcontrib>Beatty, R. A.</creatorcontrib><creatorcontrib>Klein, K. G.</creatorcontrib><creatorcontrib>McLaughlin, J. W.</creatorcontrib><creatorcontrib>Neal, L.</creatorcontrib><creatorcontrib>Scime, E. E.</creatorcontrib><creatorcontrib>West Virginia Univ., Morgantown, WV (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beatty, C. B.</au><au>Steinberger, T. E.</au><au>Aguirre, E. M.</au><au>Beatty, R. A.</au><au>Klein, K. G.</au><au>McLaughlin, J. W.</au><au>Neal, L.</au><au>Scime, E. E.</au><aucorp>West Virginia Univ., Morgantown, WV (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creation of large temperature anisotropies in a laboratory plasma</atitle><jtitle>Physics of plasmas</jtitle><date>2020-12</date><risdate>2020</risdate><volume>27</volume><issue>12</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Ion temperature anisotropy in an expanding magnetized plasma is investigated using laser induced fluorescence. Parallel and perpendicular ion velocity distribution functions (IVDFs) were measured simultaneously with high spatial resolution in the expanding plasma. Large ion temperature anisotropies (
T
⊥
i
/
T
∥
i
∼
10) are observed in a conical region at the periphery of the expanding plasma plume. A simple 2D Boris stepper model that incorporates the measured electric field structure is able to reproduce the gross features of the measured perpendicular IVDFs. A Nyquist stability analysis of the measured IVDFs suggests that multiple instabilities with
k
⊥
ρ
i
∼
1 and
k
|
|
ρ
i
∼
0.2 are likely to be excited in these plasmas.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0029315</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7445-7869</orcidid><orcidid>https://orcid.org/0000-0003-2227-4064</orcidid><orcidid>https://orcid.org/0000-0003-4128-492X</orcidid><orcidid>https://orcid.org/0000-0002-5766-1462</orcidid><orcidid>https://orcid.org/0000-0001-6038-1923</orcidid><orcidid>https://orcid.org/0000-0002-6770-1827</orcidid><orcidid>https://orcid.org/0000000267701827</orcidid><orcidid>https://orcid.org/0000000322274064</orcidid><orcidid>https://orcid.org/0000000257661462</orcidid><orcidid>https://orcid.org/0000000160381923</orcidid><orcidid>https://orcid.org/0000000274457869</orcidid><orcidid>https://orcid.org/000000034128492X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2020-12, Vol.27 (12) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0029315 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY Anisotropy Data visualization Distribution functions Electric fields Expanding plasmas Ion temperature Ion velocity Laser induced fluorescence Plasma Plasma heating Plasma instabilities Plasma physics Plasma properties and parameters Plasma sheaths Plasma sources Plasma waves Solar wind Spatial resolution Stability analysis Two dimensional models Velocity distribution |
title | Creation of large temperature anisotropies in a laboratory plasma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creation%20of%20large%20temperature%20anisotropies%20in%20a%20laboratory%20plasma&rft.jtitle=Physics%20of%20plasmas&rft.au=Beatty,%20C.%20B.&rft.aucorp=West%20Virginia%20Univ.,%20Morgantown,%20WV%20(United%20States)&rft.date=2020-12&rft.volume=27&rft.issue=12&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0029315&rft_dat=%3Cproquest_scita%3E2465873197%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465873197&rft_id=info:pmid/&rfr_iscdi=true |