Creation of large temperature anisotropies in a laboratory plasma

Ion temperature anisotropy in an expanding magnetized plasma is investigated using laser induced fluorescence. Parallel and perpendicular ion velocity distribution functions (IVDFs) were measured simultaneously with high spatial resolution in the expanding plasma. Large ion temperature anisotropies...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2020-12, Vol.27 (12)
Hauptverfasser: Beatty, C. B., Steinberger, T. E., Aguirre, E. M., Beatty, R. A., Klein, K. G., McLaughlin, J. W., Neal, L., Scime, E. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Physics of plasmas
container_volume 27
creator Beatty, C. B.
Steinberger, T. E.
Aguirre, E. M.
Beatty, R. A.
Klein, K. G.
McLaughlin, J. W.
Neal, L.
Scime, E. E.
description Ion temperature anisotropy in an expanding magnetized plasma is investigated using laser induced fluorescence. Parallel and perpendicular ion velocity distribution functions (IVDFs) were measured simultaneously with high spatial resolution in the expanding plasma. Large ion temperature anisotropies ( T ⊥ i / T ∥ i ∼ 10) are observed in a conical region at the periphery of the expanding plasma plume. A simple 2D Boris stepper model that incorporates the measured electric field structure is able to reproduce the gross features of the measured perpendicular IVDFs. A Nyquist stability analysis of the measured IVDFs suggests that multiple instabilities with k ⊥ ρ i ∼ 1 and k | | ρ i ∼ 0.2 are likely to be excited in these plasmas.
doi_str_mv 10.1063/5.0029315
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0029315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2465873197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-5fcb9df71a36bb002031863d54053bb4ba4fb6118b4af8da76d6e50807fb17033</originalsourceid><addsrcrecordid>eNqd0MtKAzEUBuAgCtbqwjcIulKYetJMLrMsxRsU3Ci4C0km0SntZExSoW_vjFNw7yqBfJz850foksCMAKd3bAYwryhhR2hCQFaF4KI8Hu4CCs7L91N0ltIaAErO5AQtltHp3IQWB483On44nN22c1HnXXRYt00KOYaucQk3Lda9MaF_DHGPu41OW32OTrzeJHdxOKfo7eH-dflUrF4en5eLVWGprHLBvDVV7QXRlBvThwRKJKc1K4FRY0qjS284IdKU2staC15zx0CC8IYIoHSKrsa5IeVGJdtkZz9taFtnsyKCMVmxHl2PqIvha-dSVuuwi22fS82HhQUllejVzahsDClF51UXm62Oe0VADTUqpg419vZ2tMOPv039D3-H-AdVV3v6A47pf4Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465873197</pqid></control><display><type>article</type><title>Creation of large temperature anisotropies in a laboratory plasma</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Beatty, C. B. ; Steinberger, T. E. ; Aguirre, E. M. ; Beatty, R. A. ; Klein, K. G. ; McLaughlin, J. W. ; Neal, L. ; Scime, E. E.</creator><creatorcontrib>Beatty, C. B. ; Steinberger, T. E. ; Aguirre, E. M. ; Beatty, R. A. ; Klein, K. G. ; McLaughlin, J. W. ; Neal, L. ; Scime, E. E. ; West Virginia Univ., Morgantown, WV (United States)</creatorcontrib><description>Ion temperature anisotropy in an expanding magnetized plasma is investigated using laser induced fluorescence. Parallel and perpendicular ion velocity distribution functions (IVDFs) were measured simultaneously with high spatial resolution in the expanding plasma. Large ion temperature anisotropies ( T ⊥ i / T ∥ i ∼ 10) are observed in a conical region at the periphery of the expanding plasma plume. A simple 2D Boris stepper model that incorporates the measured electric field structure is able to reproduce the gross features of the measured perpendicular IVDFs. A Nyquist stability analysis of the measured IVDFs suggests that multiple instabilities with k ⊥ ρ i ∼ 1 and k | | ρ i ∼ 0.2 are likely to be excited in these plasmas.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0029315</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Anisotropy ; Data visualization ; Distribution functions ; Electric fields ; Expanding plasmas ; Ion temperature ; Ion velocity ; Laser induced fluorescence ; Plasma ; Plasma heating ; Plasma instabilities ; Plasma physics ; Plasma properties and parameters ; Plasma sheaths ; Plasma sources ; Plasma waves ; Solar wind ; Spatial resolution ; Stability analysis ; Two dimensional models ; Velocity distribution</subject><ispartof>Physics of plasmas, 2020-12, Vol.27 (12)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-5fcb9df71a36bb002031863d54053bb4ba4fb6118b4af8da76d6e50807fb17033</citedby><cites>FETCH-LOGICAL-c389t-5fcb9df71a36bb002031863d54053bb4ba4fb6118b4af8da76d6e50807fb17033</cites><orcidid>0000-0002-7445-7869 ; 0000-0003-2227-4064 ; 0000-0003-4128-492X ; 0000-0002-5766-1462 ; 0000-0001-6038-1923 ; 0000-0002-6770-1827 ; 0000000267701827 ; 0000000322274064 ; 0000000257661462 ; 0000000160381923 ; 0000000274457869 ; 000000034128492X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0029315$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76353</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1755895$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Beatty, C. B.</creatorcontrib><creatorcontrib>Steinberger, T. E.</creatorcontrib><creatorcontrib>Aguirre, E. M.</creatorcontrib><creatorcontrib>Beatty, R. A.</creatorcontrib><creatorcontrib>Klein, K. G.</creatorcontrib><creatorcontrib>McLaughlin, J. W.</creatorcontrib><creatorcontrib>Neal, L.</creatorcontrib><creatorcontrib>Scime, E. E.</creatorcontrib><creatorcontrib>West Virginia Univ., Morgantown, WV (United States)</creatorcontrib><title>Creation of large temperature anisotropies in a laboratory plasma</title><title>Physics of plasmas</title><description>Ion temperature anisotropy in an expanding magnetized plasma is investigated using laser induced fluorescence. Parallel and perpendicular ion velocity distribution functions (IVDFs) were measured simultaneously with high spatial resolution in the expanding plasma. Large ion temperature anisotropies ( T ⊥ i / T ∥ i ∼ 10) are observed in a conical region at the periphery of the expanding plasma plume. A simple 2D Boris stepper model that incorporates the measured electric field structure is able to reproduce the gross features of the measured perpendicular IVDFs. A Nyquist stability analysis of the measured IVDFs suggests that multiple instabilities with k ⊥ ρ i ∼ 1 and k | | ρ i ∼ 0.2 are likely to be excited in these plasmas.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Anisotropy</subject><subject>Data visualization</subject><subject>Distribution functions</subject><subject>Electric fields</subject><subject>Expanding plasmas</subject><subject>Ion temperature</subject><subject>Ion velocity</subject><subject>Laser induced fluorescence</subject><subject>Plasma</subject><subject>Plasma heating</subject><subject>Plasma instabilities</subject><subject>Plasma physics</subject><subject>Plasma properties and parameters</subject><subject>Plasma sheaths</subject><subject>Plasma sources</subject><subject>Plasma waves</subject><subject>Solar wind</subject><subject>Spatial resolution</subject><subject>Stability analysis</subject><subject>Two dimensional models</subject><subject>Velocity distribution</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqd0MtKAzEUBuAgCtbqwjcIulKYetJMLrMsxRsU3Ci4C0km0SntZExSoW_vjFNw7yqBfJz850foksCMAKd3bAYwryhhR2hCQFaF4KI8Hu4CCs7L91N0ltIaAErO5AQtltHp3IQWB483On44nN22c1HnXXRYt00KOYaucQk3Lda9MaF_DHGPu41OW32OTrzeJHdxOKfo7eH-dflUrF4en5eLVWGprHLBvDVV7QXRlBvThwRKJKc1K4FRY0qjS284IdKU2staC15zx0CC8IYIoHSKrsa5IeVGJdtkZz9taFtnsyKCMVmxHl2PqIvha-dSVuuwi22fS82HhQUllejVzahsDClF51UXm62Oe0VADTUqpg419vZ2tMOPv039D3-H-AdVV3v6A47pf4Y</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Beatty, C. B.</creator><creator>Steinberger, T. E.</creator><creator>Aguirre, E. M.</creator><creator>Beatty, R. A.</creator><creator>Klein, K. G.</creator><creator>McLaughlin, J. W.</creator><creator>Neal, L.</creator><creator>Scime, E. E.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7445-7869</orcidid><orcidid>https://orcid.org/0000-0003-2227-4064</orcidid><orcidid>https://orcid.org/0000-0003-4128-492X</orcidid><orcidid>https://orcid.org/0000-0002-5766-1462</orcidid><orcidid>https://orcid.org/0000-0001-6038-1923</orcidid><orcidid>https://orcid.org/0000-0002-6770-1827</orcidid><orcidid>https://orcid.org/0000000267701827</orcidid><orcidid>https://orcid.org/0000000322274064</orcidid><orcidid>https://orcid.org/0000000257661462</orcidid><orcidid>https://orcid.org/0000000160381923</orcidid><orcidid>https://orcid.org/0000000274457869</orcidid><orcidid>https://orcid.org/000000034128492X</orcidid></search><sort><creationdate>202012</creationdate><title>Creation of large temperature anisotropies in a laboratory plasma</title><author>Beatty, C. B. ; Steinberger, T. E. ; Aguirre, E. M. ; Beatty, R. A. ; Klein, K. G. ; McLaughlin, J. W. ; Neal, L. ; Scime, E. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-5fcb9df71a36bb002031863d54053bb4ba4fb6118b4af8da76d6e50807fb17033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Anisotropy</topic><topic>Data visualization</topic><topic>Distribution functions</topic><topic>Electric fields</topic><topic>Expanding plasmas</topic><topic>Ion temperature</topic><topic>Ion velocity</topic><topic>Laser induced fluorescence</topic><topic>Plasma</topic><topic>Plasma heating</topic><topic>Plasma instabilities</topic><topic>Plasma physics</topic><topic>Plasma properties and parameters</topic><topic>Plasma sheaths</topic><topic>Plasma sources</topic><topic>Plasma waves</topic><topic>Solar wind</topic><topic>Spatial resolution</topic><topic>Stability analysis</topic><topic>Two dimensional models</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beatty, C. B.</creatorcontrib><creatorcontrib>Steinberger, T. E.</creatorcontrib><creatorcontrib>Aguirre, E. M.</creatorcontrib><creatorcontrib>Beatty, R. A.</creatorcontrib><creatorcontrib>Klein, K. G.</creatorcontrib><creatorcontrib>McLaughlin, J. W.</creatorcontrib><creatorcontrib>Neal, L.</creatorcontrib><creatorcontrib>Scime, E. E.</creatorcontrib><creatorcontrib>West Virginia Univ., Morgantown, WV (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beatty, C. B.</au><au>Steinberger, T. E.</au><au>Aguirre, E. M.</au><au>Beatty, R. A.</au><au>Klein, K. G.</au><au>McLaughlin, J. W.</au><au>Neal, L.</au><au>Scime, E. E.</au><aucorp>West Virginia Univ., Morgantown, WV (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creation of large temperature anisotropies in a laboratory plasma</atitle><jtitle>Physics of plasmas</jtitle><date>2020-12</date><risdate>2020</risdate><volume>27</volume><issue>12</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Ion temperature anisotropy in an expanding magnetized plasma is investigated using laser induced fluorescence. Parallel and perpendicular ion velocity distribution functions (IVDFs) were measured simultaneously with high spatial resolution in the expanding plasma. Large ion temperature anisotropies ( T ⊥ i / T ∥ i ∼ 10) are observed in a conical region at the periphery of the expanding plasma plume. A simple 2D Boris stepper model that incorporates the measured electric field structure is able to reproduce the gross features of the measured perpendicular IVDFs. A Nyquist stability analysis of the measured IVDFs suggests that multiple instabilities with k ⊥ ρ i ∼ 1 and k | | ρ i ∼ 0.2 are likely to be excited in these plasmas.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0029315</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7445-7869</orcidid><orcidid>https://orcid.org/0000-0003-2227-4064</orcidid><orcidid>https://orcid.org/0000-0003-4128-492X</orcidid><orcidid>https://orcid.org/0000-0002-5766-1462</orcidid><orcidid>https://orcid.org/0000-0001-6038-1923</orcidid><orcidid>https://orcid.org/0000-0002-6770-1827</orcidid><orcidid>https://orcid.org/0000000267701827</orcidid><orcidid>https://orcid.org/0000000322274064</orcidid><orcidid>https://orcid.org/0000000257661462</orcidid><orcidid>https://orcid.org/0000000160381923</orcidid><orcidid>https://orcid.org/0000000274457869</orcidid><orcidid>https://orcid.org/000000034128492X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2020-12, Vol.27 (12)
issn 1070-664X
1089-7674
language eng
recordid cdi_scitation_primary_10_1063_5_0029315
source AIP Journals Complete; Alma/SFX Local Collection
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
Anisotropy
Data visualization
Distribution functions
Electric fields
Expanding plasmas
Ion temperature
Ion velocity
Laser induced fluorescence
Plasma
Plasma heating
Plasma instabilities
Plasma physics
Plasma properties and parameters
Plasma sheaths
Plasma sources
Plasma waves
Solar wind
Spatial resolution
Stability analysis
Two dimensional models
Velocity distribution
title Creation of large temperature anisotropies in a laboratory plasma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creation%20of%20large%20temperature%20anisotropies%20in%20a%20laboratory%20plasma&rft.jtitle=Physics%20of%20plasmas&rft.au=Beatty,%20C.%20B.&rft.aucorp=West%20Virginia%20Univ.,%20Morgantown,%20WV%20(United%20States)&rft.date=2020-12&rft.volume=27&rft.issue=12&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0029315&rft_dat=%3Cproquest_scita%3E2465873197%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465873197&rft_id=info:pmid/&rfr_iscdi=true