Techno-economic analysis of thermochemical storage for CSP systems

The use of thermochemical materials, like redox oxides, for hybrid sensible/thermochemical storage in solar tower plants can potentially reduce the LCOE and make such plants more competitive. For the techno-economic system analysis, three candidate redox materials were analyzed for their cost reduct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Buck, Reiner, Tescari, Stefania, Schmücker, Martin, Preisner, Nicole, Agrafiotis, Christos
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2303
creator Buck, Reiner
Tescari, Stefania
Schmücker, Martin
Preisner, Nicole
Agrafiotis, Christos
description The use of thermochemical materials, like redox oxides, for hybrid sensible/thermochemical storage in solar tower plants can potentially reduce the LCOE and make such plants more competitive. For the techno-economic system analysis, three candidate redox materials were analyzed for their cost reduction potential: cobalt-based, manganese-based and perovskite-based oxide materials. As reference process the use of inert commercial bauxite particles (sensible-only storage) was considered. A CSP plant with a nominal power of 125 MWe and a storage capacity of 12h was assumed for the analysis. Cost factors influenced by the material selection are storage cost, steam generator cost and particle transport system cost. Based on total system cost and annual electricity generation, the LCOE was calculated. The results of the analysis show that some redox materials can significantly reduce the required storage mass and volume, while others lead only to a marginal improvement. More important is the specific cost of the redox material. Expensive cobalt-based materials result in significantly higher LCOE, while perovskite materials show potential for reduced LCOE when these particles can be manufactured at low cost. Therefore it is recommended to focus future work on this material class.
doi_str_mv 10.1063/5.0028904
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0028904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2469415191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-9351eabaeeb69346e86862bbcb747e1d59106430a11d841698016b873e883ba3</originalsourceid><addsrcrecordid>eNp90MFKAzEQBuAgCtbqwTcIeBO2ZjbZbHLUYlUoKNiDt5Cks3ZLd1OTVOjbu9KCN09zmI-fmZ-Qa2ATYJLfVRPGSqWZOCEjqCooagnylIwY06IoBf84JxcprQek61qNyMMC_aoPBfrQh6711PZ2s09toqGheYWxC36Fw8JuaMoh2k-kTYh0-v5G0z5l7NIlOWvsJuHVcY7JYva4mD4X89enl-n9vPC8VLnQvAK0ziI6qbmQqKSSpXPe1aJGWFZ6eEBwZgGWSoDUioF0quaoFHeWj8nNIXYbw9cOUzbrsIvDtcmUQmoBFWgY1O1BJd9mm9vQm21sOxv3Bpj5rchU5ljRf_g7xD9otsuG_wCyEmYF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2469415191</pqid></control><display><type>conference_proceeding</type><title>Techno-economic analysis of thermochemical storage for CSP systems</title><source>American Institute of Physics (AIP) Journals</source><creator>Buck, Reiner ; Tescari, Stefania ; Schmücker, Martin ; Preisner, Nicole ; Agrafiotis, Christos</creator><contributor>Richter, Christoph</contributor><creatorcontrib>Buck, Reiner ; Tescari, Stefania ; Schmücker, Martin ; Preisner, Nicole ; Agrafiotis, Christos ; Richter, Christoph</creatorcontrib><description>The use of thermochemical materials, like redox oxides, for hybrid sensible/thermochemical storage in solar tower plants can potentially reduce the LCOE and make such plants more competitive. For the techno-economic system analysis, three candidate redox materials were analyzed for their cost reduction potential: cobalt-based, manganese-based and perovskite-based oxide materials. As reference process the use of inert commercial bauxite particles (sensible-only storage) was considered. A CSP plant with a nominal power of 125 MWe and a storage capacity of 12h was assumed for the analysis. Cost factors influenced by the material selection are storage cost, steam generator cost and particle transport system cost. Based on total system cost and annual electricity generation, the LCOE was calculated. The results of the analysis show that some redox materials can significantly reduce the required storage mass and volume, while others lead only to a marginal improvement. More important is the specific cost of the redox material. Expensive cobalt-based materials result in significantly higher LCOE, while perovskite materials show potential for reduced LCOE when these particles can be manufactured at low cost. Therefore it is recommended to focus future work on this material class.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0028904</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Bauxite ; Bayer process ; Boilers ; Cobalt ; Cost analysis ; Economic analysis ; Manganese ; Materials selection ; Perovskites ; Storage capacity ; Systems analysis ; Transportation systems</subject><ispartof>AIP conference proceedings, 2020, Vol.2303 (1)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-9351eabaeeb69346e86862bbcb747e1d59106430a11d841698016b873e883ba3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0028904$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,791,4498,23911,23912,25121,27905,27906,76133</link.rule.ids></links><search><contributor>Richter, Christoph</contributor><creatorcontrib>Buck, Reiner</creatorcontrib><creatorcontrib>Tescari, Stefania</creatorcontrib><creatorcontrib>Schmücker, Martin</creatorcontrib><creatorcontrib>Preisner, Nicole</creatorcontrib><creatorcontrib>Agrafiotis, Christos</creatorcontrib><title>Techno-economic analysis of thermochemical storage for CSP systems</title><title>AIP conference proceedings</title><description>The use of thermochemical materials, like redox oxides, for hybrid sensible/thermochemical storage in solar tower plants can potentially reduce the LCOE and make such plants more competitive. For the techno-economic system analysis, three candidate redox materials were analyzed for their cost reduction potential: cobalt-based, manganese-based and perovskite-based oxide materials. As reference process the use of inert commercial bauxite particles (sensible-only storage) was considered. A CSP plant with a nominal power of 125 MWe and a storage capacity of 12h was assumed for the analysis. Cost factors influenced by the material selection are storage cost, steam generator cost and particle transport system cost. Based on total system cost and annual electricity generation, the LCOE was calculated. The results of the analysis show that some redox materials can significantly reduce the required storage mass and volume, while others lead only to a marginal improvement. More important is the specific cost of the redox material. Expensive cobalt-based materials result in significantly higher LCOE, while perovskite materials show potential for reduced LCOE when these particles can be manufactured at low cost. Therefore it is recommended to focus future work on this material class.</description><subject>Bauxite</subject><subject>Bayer process</subject><subject>Boilers</subject><subject>Cobalt</subject><subject>Cost analysis</subject><subject>Economic analysis</subject><subject>Manganese</subject><subject>Materials selection</subject><subject>Perovskites</subject><subject>Storage capacity</subject><subject>Systems analysis</subject><subject>Transportation systems</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp90MFKAzEQBuAgCtbqwTcIeBO2ZjbZbHLUYlUoKNiDt5Cks3ZLd1OTVOjbu9KCN09zmI-fmZ-Qa2ATYJLfVRPGSqWZOCEjqCooagnylIwY06IoBf84JxcprQek61qNyMMC_aoPBfrQh6711PZ2s09toqGheYWxC36Fw8JuaMoh2k-kTYh0-v5G0z5l7NIlOWvsJuHVcY7JYva4mD4X89enl-n9vPC8VLnQvAK0ziI6qbmQqKSSpXPe1aJGWFZ6eEBwZgGWSoDUioF0quaoFHeWj8nNIXYbw9cOUzbrsIvDtcmUQmoBFWgY1O1BJd9mm9vQm21sOxv3Bpj5rchU5ljRf_g7xD9otsuG_wCyEmYF</recordid><startdate>20201211</startdate><enddate>20201211</enddate><creator>Buck, Reiner</creator><creator>Tescari, Stefania</creator><creator>Schmücker, Martin</creator><creator>Preisner, Nicole</creator><creator>Agrafiotis, Christos</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20201211</creationdate><title>Techno-economic analysis of thermochemical storage for CSP systems</title><author>Buck, Reiner ; Tescari, Stefania ; Schmücker, Martin ; Preisner, Nicole ; Agrafiotis, Christos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-9351eabaeeb69346e86862bbcb747e1d59106430a11d841698016b873e883ba3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bauxite</topic><topic>Bayer process</topic><topic>Boilers</topic><topic>Cobalt</topic><topic>Cost analysis</topic><topic>Economic analysis</topic><topic>Manganese</topic><topic>Materials selection</topic><topic>Perovskites</topic><topic>Storage capacity</topic><topic>Systems analysis</topic><topic>Transportation systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buck, Reiner</creatorcontrib><creatorcontrib>Tescari, Stefania</creatorcontrib><creatorcontrib>Schmücker, Martin</creatorcontrib><creatorcontrib>Preisner, Nicole</creatorcontrib><creatorcontrib>Agrafiotis, Christos</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buck, Reiner</au><au>Tescari, Stefania</au><au>Schmücker, Martin</au><au>Preisner, Nicole</au><au>Agrafiotis, Christos</au><au>Richter, Christoph</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Techno-economic analysis of thermochemical storage for CSP systems</atitle><btitle>AIP conference proceedings</btitle><date>2020-12-11</date><risdate>2020</risdate><volume>2303</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The use of thermochemical materials, like redox oxides, for hybrid sensible/thermochemical storage in solar tower plants can potentially reduce the LCOE and make such plants more competitive. For the techno-economic system analysis, three candidate redox materials were analyzed for their cost reduction potential: cobalt-based, manganese-based and perovskite-based oxide materials. As reference process the use of inert commercial bauxite particles (sensible-only storage) was considered. A CSP plant with a nominal power of 125 MWe and a storage capacity of 12h was assumed for the analysis. Cost factors influenced by the material selection are storage cost, steam generator cost and particle transport system cost. Based on total system cost and annual electricity generation, the LCOE was calculated. The results of the analysis show that some redox materials can significantly reduce the required storage mass and volume, while others lead only to a marginal improvement. More important is the specific cost of the redox material. Expensive cobalt-based materials result in significantly higher LCOE, while perovskite materials show potential for reduced LCOE when these particles can be manufactured at low cost. Therefore it is recommended to focus future work on this material class.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0028904</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2020, Vol.2303 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0028904
source American Institute of Physics (AIP) Journals
subjects Bauxite
Bayer process
Boilers
Cobalt
Cost analysis
Economic analysis
Manganese
Materials selection
Perovskites
Storage capacity
Systems analysis
Transportation systems
title Techno-economic analysis of thermochemical storage for CSP systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A01%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Techno-economic%20analysis%20of%20thermochemical%20storage%20for%20CSP%20systems&rft.btitle=AIP%20conference%20proceedings&rft.au=Buck,%20Reiner&rft.date=2020-12-11&rft.volume=2303&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0028904&rft_dat=%3Cproquest_scita%3E2469415191%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2469415191&rft_id=info:pmid/&rfr_iscdi=true