SCARABEUS: Supercritical carbon dioxide/alternative fluid blends for efficiency upgrade of solar power plants
The future of Concentrated Solar Power technology relies on significant cost reduction to be competitive against both fossil fuel power stations and renewable technologies as photovoltaics and wind. Most of the research activity on concentrated solar power focuses on supercritical CO2 cycles to incr...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2303 |
creator | Binotti, Marco Marcoberardino, Gioele Di Iora, Paolo Invernizzi, Costante Manzolini, Giampaolo |
description | The future of Concentrated Solar Power technology relies on significant cost reduction to be competitive against both fossil fuel power stations and renewable technologies as photovoltaics and wind. Most of the research activity on concentrated solar power focuses on supercritical CO2 cycles to increase the solar plant efficiency together with a cost reduction. Recently, several research groups have started investigating the blending of CO2 with small amounts of additives to boost the thermodynamic cycle performance. The SCARABEUS project aims at developing and demonstrating CO2 blends in concentrating solar power plant with maximum temperatures of 700°C, power cycle efficiency above 50% and cost of electricity below 96 €/MWh. The innovative fluid and newly developed components will be validated at a relevant scale (300 kWth) for 300 h in a CSP-like operating environment. |
doi_str_mv | 10.1063/5.0028799 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0028799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2469415087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-c78267f28fda8bb007357705de88fa99c0de5af5fe0ae5dab7bed610d0e536993</originalsourceid><addsrcrecordid>eNp90M9LwzAUB_AgCs7pwf8g4E3olrRNk3ibY_6AgeAceCtp8iIZXVOTdrr_3soG3ry8d_nw5b0vQteUTCgpsimbEJIKLuUJGlHGaMILWpyiESEyT9I8ez9HFzFuBiQ5FyO0Xc1nr7P7xXp1h1d9C0EH1zmtaqxVqHyDjfPfzsBU1R2ERnVuB9jWvTO4qqExEVsfMFjrtING73HffgRlAHuLo69VwK3_gmHWquniJTqzqo5wddxjtH5YvM2fkuXL4_N8tkx0loou0VykBbepsEaJqiKEZ4xzwgwIYZWUmhhgyjILRAEzquIVmIISQ4BlhZTZGN0cctvgP3uIXbnx_XB9Hcs0L2ROGRF8ULcHFbXrhs98U7bBbVXYl5SUv3WWrDzW-R_e-fAHy9bY7Acg_3eB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2469415087</pqid></control><display><type>conference_proceeding</type><title>SCARABEUS: Supercritical carbon dioxide/alternative fluid blends for efficiency upgrade of solar power plants</title><source>AIP Journals Complete</source><creator>Binotti, Marco ; Marcoberardino, Gioele Di ; Iora, Paolo ; Invernizzi, Costante ; Manzolini, Giampaolo</creator><contributor>Richter, Christoph</contributor><creatorcontrib>Binotti, Marco ; Marcoberardino, Gioele Di ; Iora, Paolo ; Invernizzi, Costante ; Manzolini, Giampaolo ; Richter, Christoph</creatorcontrib><description>The future of Concentrated Solar Power technology relies on significant cost reduction to be competitive against both fossil fuel power stations and renewable technologies as photovoltaics and wind. Most of the research activity on concentrated solar power focuses on supercritical CO2 cycles to increase the solar plant efficiency together with a cost reduction. Recently, several research groups have started investigating the blending of CO2 with small amounts of additives to boost the thermodynamic cycle performance. The SCARABEUS project aims at developing and demonstrating CO2 blends in concentrating solar power plant with maximum temperatures of 700°C, power cycle efficiency above 50% and cost of electricity below 96 €/MWh. The innovative fluid and newly developed components will be validated at a relevant scale (300 kWth) for 300 h in a CSP-like operating environment.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0028799</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Additives ; Carbon dioxide ; Cost reduction ; Efficiency ; Fossil fuels ; Mixtures ; Photovoltaic cells ; Power plants ; Solar energy</subject><ispartof>AIP conference proceedings, 2020, Vol.2303 (1)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-c78267f28fda8bb007357705de88fa99c0de5af5fe0ae5dab7bed610d0e536993</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0028799$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Richter, Christoph</contributor><creatorcontrib>Binotti, Marco</creatorcontrib><creatorcontrib>Marcoberardino, Gioele Di</creatorcontrib><creatorcontrib>Iora, Paolo</creatorcontrib><creatorcontrib>Invernizzi, Costante</creatorcontrib><creatorcontrib>Manzolini, Giampaolo</creatorcontrib><title>SCARABEUS: Supercritical carbon dioxide/alternative fluid blends for efficiency upgrade of solar power plants</title><title>AIP conference proceedings</title><description>The future of Concentrated Solar Power technology relies on significant cost reduction to be competitive against both fossil fuel power stations and renewable technologies as photovoltaics and wind. Most of the research activity on concentrated solar power focuses on supercritical CO2 cycles to increase the solar plant efficiency together with a cost reduction. Recently, several research groups have started investigating the blending of CO2 with small amounts of additives to boost the thermodynamic cycle performance. The SCARABEUS project aims at developing and demonstrating CO2 blends in concentrating solar power plant with maximum temperatures of 700°C, power cycle efficiency above 50% and cost of electricity below 96 €/MWh. The innovative fluid and newly developed components will be validated at a relevant scale (300 kWth) for 300 h in a CSP-like operating environment.</description><subject>Additives</subject><subject>Carbon dioxide</subject><subject>Cost reduction</subject><subject>Efficiency</subject><subject>Fossil fuels</subject><subject>Mixtures</subject><subject>Photovoltaic cells</subject><subject>Power plants</subject><subject>Solar energy</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp90M9LwzAUB_AgCs7pwf8g4E3olrRNk3ibY_6AgeAceCtp8iIZXVOTdrr_3soG3ry8d_nw5b0vQteUTCgpsimbEJIKLuUJGlHGaMILWpyiESEyT9I8ez9HFzFuBiQ5FyO0Xc1nr7P7xXp1h1d9C0EH1zmtaqxVqHyDjfPfzsBU1R2ERnVuB9jWvTO4qqExEVsfMFjrtING73HffgRlAHuLo69VwK3_gmHWquniJTqzqo5wddxjtH5YvM2fkuXL4_N8tkx0loou0VykBbepsEaJqiKEZ4xzwgwIYZWUmhhgyjILRAEzquIVmIISQ4BlhZTZGN0cctvgP3uIXbnx_XB9Hcs0L2ROGRF8ULcHFbXrhs98U7bBbVXYl5SUv3WWrDzW-R_e-fAHy9bY7Acg_3eB</recordid><startdate>20201211</startdate><enddate>20201211</enddate><creator>Binotti, Marco</creator><creator>Marcoberardino, Gioele Di</creator><creator>Iora, Paolo</creator><creator>Invernizzi, Costante</creator><creator>Manzolini, Giampaolo</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20201211</creationdate><title>SCARABEUS: Supercritical carbon dioxide/alternative fluid blends for efficiency upgrade of solar power plants</title><author>Binotti, Marco ; Marcoberardino, Gioele Di ; Iora, Paolo ; Invernizzi, Costante ; Manzolini, Giampaolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-c78267f28fda8bb007357705de88fa99c0de5af5fe0ae5dab7bed610d0e536993</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Additives</topic><topic>Carbon dioxide</topic><topic>Cost reduction</topic><topic>Efficiency</topic><topic>Fossil fuels</topic><topic>Mixtures</topic><topic>Photovoltaic cells</topic><topic>Power plants</topic><topic>Solar energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Binotti, Marco</creatorcontrib><creatorcontrib>Marcoberardino, Gioele Di</creatorcontrib><creatorcontrib>Iora, Paolo</creatorcontrib><creatorcontrib>Invernizzi, Costante</creatorcontrib><creatorcontrib>Manzolini, Giampaolo</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Binotti, Marco</au><au>Marcoberardino, Gioele Di</au><au>Iora, Paolo</au><au>Invernizzi, Costante</au><au>Manzolini, Giampaolo</au><au>Richter, Christoph</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>SCARABEUS: Supercritical carbon dioxide/alternative fluid blends for efficiency upgrade of solar power plants</atitle><btitle>AIP conference proceedings</btitle><date>2020-12-11</date><risdate>2020</risdate><volume>2303</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The future of Concentrated Solar Power technology relies on significant cost reduction to be competitive against both fossil fuel power stations and renewable technologies as photovoltaics and wind. Most of the research activity on concentrated solar power focuses on supercritical CO2 cycles to increase the solar plant efficiency together with a cost reduction. Recently, several research groups have started investigating the blending of CO2 with small amounts of additives to boost the thermodynamic cycle performance. The SCARABEUS project aims at developing and demonstrating CO2 blends in concentrating solar power plant with maximum temperatures of 700°C, power cycle efficiency above 50% and cost of electricity below 96 €/MWh. The innovative fluid and newly developed components will be validated at a relevant scale (300 kWth) for 300 h in a CSP-like operating environment.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0028799</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2020, Vol.2303 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0028799 |
source | AIP Journals Complete |
subjects | Additives Carbon dioxide Cost reduction Efficiency Fossil fuels Mixtures Photovoltaic cells Power plants Solar energy |
title | SCARABEUS: Supercritical carbon dioxide/alternative fluid blends for efficiency upgrade of solar power plants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A33%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=SCARABEUS:%20Supercritical%20carbon%20dioxide/alternative%20fluid%20blends%20for%20efficiency%20upgrade%20of%20solar%20power%20plants&rft.btitle=AIP%20conference%20proceedings&rft.au=Binotti,%20Marco&rft.date=2020-12-11&rft.volume=2303&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0028799&rft_dat=%3Cproquest_scita%3E2469415087%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2469415087&rft_id=info:pmid/&rfr_iscdi=true |