SCARABEUS: Supercritical carbon dioxide/alternative fluid blends for efficiency upgrade of solar power plants

The future of Concentrated Solar Power technology relies on significant cost reduction to be competitive against both fossil fuel power stations and renewable technologies as photovoltaics and wind. Most of the research activity on concentrated solar power focuses on supercritical CO2 cycles to incr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Binotti, Marco, Marcoberardino, Gioele Di, Iora, Paolo, Invernizzi, Costante, Manzolini, Giampaolo
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2303
creator Binotti, Marco
Marcoberardino, Gioele Di
Iora, Paolo
Invernizzi, Costante
Manzolini, Giampaolo
description The future of Concentrated Solar Power technology relies on significant cost reduction to be competitive against both fossil fuel power stations and renewable technologies as photovoltaics and wind. Most of the research activity on concentrated solar power focuses on supercritical CO2 cycles to increase the solar plant efficiency together with a cost reduction. Recently, several research groups have started investigating the blending of CO2 with small amounts of additives to boost the thermodynamic cycle performance. The SCARABEUS project aims at developing and demonstrating CO2 blends in concentrating solar power plant with maximum temperatures of 700°C, power cycle efficiency above 50% and cost of electricity below 96 €/MWh. The innovative fluid and newly developed components will be validated at a relevant scale (300 kWth) for 300 h in a CSP-like operating environment.
doi_str_mv 10.1063/5.0028799
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0028799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2469415087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-c78267f28fda8bb007357705de88fa99c0de5af5fe0ae5dab7bed610d0e536993</originalsourceid><addsrcrecordid>eNp90M9LwzAUB_AgCs7pwf8g4E3olrRNk3ibY_6AgeAceCtp8iIZXVOTdrr_3soG3ry8d_nw5b0vQteUTCgpsimbEJIKLuUJGlHGaMILWpyiESEyT9I8ez9HFzFuBiQ5FyO0Xc1nr7P7xXp1h1d9C0EH1zmtaqxVqHyDjfPfzsBU1R2ERnVuB9jWvTO4qqExEVsfMFjrtING73HffgRlAHuLo69VwK3_gmHWquniJTqzqo5wddxjtH5YvM2fkuXL4_N8tkx0loou0VykBbepsEaJqiKEZ4xzwgwIYZWUmhhgyjILRAEzquIVmIISQ4BlhZTZGN0cctvgP3uIXbnx_XB9Hcs0L2ROGRF8ULcHFbXrhs98U7bBbVXYl5SUv3WWrDzW-R_e-fAHy9bY7Acg_3eB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2469415087</pqid></control><display><type>conference_proceeding</type><title>SCARABEUS: Supercritical carbon dioxide/alternative fluid blends for efficiency upgrade of solar power plants</title><source>AIP Journals Complete</source><creator>Binotti, Marco ; Marcoberardino, Gioele Di ; Iora, Paolo ; Invernizzi, Costante ; Manzolini, Giampaolo</creator><contributor>Richter, Christoph</contributor><creatorcontrib>Binotti, Marco ; Marcoberardino, Gioele Di ; Iora, Paolo ; Invernizzi, Costante ; Manzolini, Giampaolo ; Richter, Christoph</creatorcontrib><description>The future of Concentrated Solar Power technology relies on significant cost reduction to be competitive against both fossil fuel power stations and renewable technologies as photovoltaics and wind. Most of the research activity on concentrated solar power focuses on supercritical CO2 cycles to increase the solar plant efficiency together with a cost reduction. Recently, several research groups have started investigating the blending of CO2 with small amounts of additives to boost the thermodynamic cycle performance. The SCARABEUS project aims at developing and demonstrating CO2 blends in concentrating solar power plant with maximum temperatures of 700°C, power cycle efficiency above 50% and cost of electricity below 96 €/MWh. The innovative fluid and newly developed components will be validated at a relevant scale (300 kWth) for 300 h in a CSP-like operating environment.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0028799</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Additives ; Carbon dioxide ; Cost reduction ; Efficiency ; Fossil fuels ; Mixtures ; Photovoltaic cells ; Power plants ; Solar energy</subject><ispartof>AIP conference proceedings, 2020, Vol.2303 (1)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-c78267f28fda8bb007357705de88fa99c0de5af5fe0ae5dab7bed610d0e536993</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0028799$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Richter, Christoph</contributor><creatorcontrib>Binotti, Marco</creatorcontrib><creatorcontrib>Marcoberardino, Gioele Di</creatorcontrib><creatorcontrib>Iora, Paolo</creatorcontrib><creatorcontrib>Invernizzi, Costante</creatorcontrib><creatorcontrib>Manzolini, Giampaolo</creatorcontrib><title>SCARABEUS: Supercritical carbon dioxide/alternative fluid blends for efficiency upgrade of solar power plants</title><title>AIP conference proceedings</title><description>The future of Concentrated Solar Power technology relies on significant cost reduction to be competitive against both fossil fuel power stations and renewable technologies as photovoltaics and wind. Most of the research activity on concentrated solar power focuses on supercritical CO2 cycles to increase the solar plant efficiency together with a cost reduction. Recently, several research groups have started investigating the blending of CO2 with small amounts of additives to boost the thermodynamic cycle performance. The SCARABEUS project aims at developing and demonstrating CO2 blends in concentrating solar power plant with maximum temperatures of 700°C, power cycle efficiency above 50% and cost of electricity below 96 €/MWh. The innovative fluid and newly developed components will be validated at a relevant scale (300 kWth) for 300 h in a CSP-like operating environment.</description><subject>Additives</subject><subject>Carbon dioxide</subject><subject>Cost reduction</subject><subject>Efficiency</subject><subject>Fossil fuels</subject><subject>Mixtures</subject><subject>Photovoltaic cells</subject><subject>Power plants</subject><subject>Solar energy</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp90M9LwzAUB_AgCs7pwf8g4E3olrRNk3ibY_6AgeAceCtp8iIZXVOTdrr_3soG3ry8d_nw5b0vQteUTCgpsimbEJIKLuUJGlHGaMILWpyiESEyT9I8ez9HFzFuBiQ5FyO0Xc1nr7P7xXp1h1d9C0EH1zmtaqxVqHyDjfPfzsBU1R2ERnVuB9jWvTO4qqExEVsfMFjrtING73HffgRlAHuLo69VwK3_gmHWquniJTqzqo5wddxjtH5YvM2fkuXL4_N8tkx0loou0VykBbepsEaJqiKEZ4xzwgwIYZWUmhhgyjILRAEzquIVmIISQ4BlhZTZGN0cctvgP3uIXbnx_XB9Hcs0L2ROGRF8ULcHFbXrhs98U7bBbVXYl5SUv3WWrDzW-R_e-fAHy9bY7Acg_3eB</recordid><startdate>20201211</startdate><enddate>20201211</enddate><creator>Binotti, Marco</creator><creator>Marcoberardino, Gioele Di</creator><creator>Iora, Paolo</creator><creator>Invernizzi, Costante</creator><creator>Manzolini, Giampaolo</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20201211</creationdate><title>SCARABEUS: Supercritical carbon dioxide/alternative fluid blends for efficiency upgrade of solar power plants</title><author>Binotti, Marco ; Marcoberardino, Gioele Di ; Iora, Paolo ; Invernizzi, Costante ; Manzolini, Giampaolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-c78267f28fda8bb007357705de88fa99c0de5af5fe0ae5dab7bed610d0e536993</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Additives</topic><topic>Carbon dioxide</topic><topic>Cost reduction</topic><topic>Efficiency</topic><topic>Fossil fuels</topic><topic>Mixtures</topic><topic>Photovoltaic cells</topic><topic>Power plants</topic><topic>Solar energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Binotti, Marco</creatorcontrib><creatorcontrib>Marcoberardino, Gioele Di</creatorcontrib><creatorcontrib>Iora, Paolo</creatorcontrib><creatorcontrib>Invernizzi, Costante</creatorcontrib><creatorcontrib>Manzolini, Giampaolo</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Binotti, Marco</au><au>Marcoberardino, Gioele Di</au><au>Iora, Paolo</au><au>Invernizzi, Costante</au><au>Manzolini, Giampaolo</au><au>Richter, Christoph</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>SCARABEUS: Supercritical carbon dioxide/alternative fluid blends for efficiency upgrade of solar power plants</atitle><btitle>AIP conference proceedings</btitle><date>2020-12-11</date><risdate>2020</risdate><volume>2303</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The future of Concentrated Solar Power technology relies on significant cost reduction to be competitive against both fossil fuel power stations and renewable technologies as photovoltaics and wind. Most of the research activity on concentrated solar power focuses on supercritical CO2 cycles to increase the solar plant efficiency together with a cost reduction. Recently, several research groups have started investigating the blending of CO2 with small amounts of additives to boost the thermodynamic cycle performance. The SCARABEUS project aims at developing and demonstrating CO2 blends in concentrating solar power plant with maximum temperatures of 700°C, power cycle efficiency above 50% and cost of electricity below 96 €/MWh. The innovative fluid and newly developed components will be validated at a relevant scale (300 kWth) for 300 h in a CSP-like operating environment.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0028799</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2020, Vol.2303 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0028799
source AIP Journals Complete
subjects Additives
Carbon dioxide
Cost reduction
Efficiency
Fossil fuels
Mixtures
Photovoltaic cells
Power plants
Solar energy
title SCARABEUS: Supercritical carbon dioxide/alternative fluid blends for efficiency upgrade of solar power plants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A33%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=SCARABEUS:%20Supercritical%20carbon%20dioxide/alternative%20fluid%20blends%20for%20efficiency%20upgrade%20of%20solar%20power%20plants&rft.btitle=AIP%20conference%20proceedings&rft.au=Binotti,%20Marco&rft.date=2020-12-11&rft.volume=2303&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0028799&rft_dat=%3Cproquest_scita%3E2469415087%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2469415087&rft_id=info:pmid/&rfr_iscdi=true