Application of mixed integer nonlinear programming for system identification

This work describes a method of deadtime approximation in dynamic systems, particularly in the context of nonlinear model predictive control based on mechanistic models where the differentiability of the equations must be ensured. The resulting system identification system is solved using the BBMCSF...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fernandes, Natércia C. P., Fernandes, Florbela P., Romanenko, Andrey
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2293
creator Fernandes, Natércia C. P.
Fernandes, Florbela P.
Romanenko, Andrey
description This work describes a method of deadtime approximation in dynamic systems, particularly in the context of nonlinear model predictive control based on mechanistic models where the differentiability of the equations must be ensured. The resulting system identification system is solved using the BBMCSFilter (Branch and Bound based on a Multistart Coordinate Search Filter) global optimization algorithm to determine the order and the parameters of the resulting model, taking into account not only the model-plant mismatch but also the model complexity and the resulting computation time. The application of the method is illustrated with a simulated example of a chemical process unit.
doi_str_mv 10.1063/5.0026410
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0026410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2464232593</sourcerecordid><originalsourceid>FETCH-LOGICAL-p314t-83eb490b08a39cd1a60e7c8a17a5363e1f8c372a7f557dbd6f3f498e00650baf3</originalsourceid><addsrcrecordid>eNp90EtLAzEUBeAgCtbqwn8QcCdMvZm8Zpal-IIBNwruQmYmKSmdZExSsf_e0Rbcubqbj3MPB6FrAgsCgt7xBUApGIETNCOck0IKIk7RDKBmRcno-zm6SGkzoVrKaoaa5ThuXaezCx4Hiwf3ZXrsfDZrE7EPfuu80RGPMayjHgbn19iGiNM-ZTNg1xufnT0GXKIzq7fJXB3vHL093L-unorm5fF5tWyKkRKWi4qaltXQQqVp3fVECzCyqzSRmlNBDbFVR2WppeVc9m0vLLWsrgyA4NBqS-fo5pA7tfrYmZTVJuyin16qkglW0pLXdFK3B5U6l3_7qTG6Qce9IqB-1lJcHdf6D3-G-AfV2Fv6DRZpa5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2464232593</pqid></control><display><type>conference_proceeding</type><title>Application of mixed integer nonlinear programming for system identification</title><source>AIP Journals Complete</source><creator>Fernandes, Natércia C. P. ; Fernandes, Florbela P. ; Romanenko, Andrey</creator><contributor>Simos, Theodore ; Tsitouras, Charalambos</contributor><creatorcontrib>Fernandes, Natércia C. P. ; Fernandes, Florbela P. ; Romanenko, Andrey ; Simos, Theodore ; Tsitouras, Charalambos</creatorcontrib><description>This work describes a method of deadtime approximation in dynamic systems, particularly in the context of nonlinear model predictive control based on mechanistic models where the differentiability of the equations must be ensured. The resulting system identification system is solved using the BBMCSFilter (Branch and Bound based on a Multistart Coordinate Search Filter) global optimization algorithm to determine the order and the parameters of the resulting model, taking into account not only the model-plant mismatch but also the model complexity and the resulting computation time. The application of the method is illustrated with a simulated example of a chemical process unit.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0026410</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Approximation ; Global optimization ; Mixed integer ; Nonlinear control ; Nonlinear programming ; Predictive control ; System identification</subject><ispartof>AIP conference proceedings, 2020, Vol.2293 (1)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0026410$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4502,23921,23922,25131,27915,27916,76145</link.rule.ids></links><search><contributor>Simos, Theodore</contributor><contributor>Tsitouras, Charalambos</contributor><creatorcontrib>Fernandes, Natércia C. P.</creatorcontrib><creatorcontrib>Fernandes, Florbela P.</creatorcontrib><creatorcontrib>Romanenko, Andrey</creatorcontrib><title>Application of mixed integer nonlinear programming for system identification</title><title>AIP conference proceedings</title><description>This work describes a method of deadtime approximation in dynamic systems, particularly in the context of nonlinear model predictive control based on mechanistic models where the differentiability of the equations must be ensured. The resulting system identification system is solved using the BBMCSFilter (Branch and Bound based on a Multistart Coordinate Search Filter) global optimization algorithm to determine the order and the parameters of the resulting model, taking into account not only the model-plant mismatch but also the model complexity and the resulting computation time. The application of the method is illustrated with a simulated example of a chemical process unit.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Global optimization</subject><subject>Mixed integer</subject><subject>Nonlinear control</subject><subject>Nonlinear programming</subject><subject>Predictive control</subject><subject>System identification</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp90EtLAzEUBeAgCtbqwn8QcCdMvZm8Zpal-IIBNwruQmYmKSmdZExSsf_e0Rbcubqbj3MPB6FrAgsCgt7xBUApGIETNCOck0IKIk7RDKBmRcno-zm6SGkzoVrKaoaa5ThuXaezCx4Hiwf3ZXrsfDZrE7EPfuu80RGPMayjHgbn19iGiNM-ZTNg1xufnT0GXKIzq7fJXB3vHL093L-unorm5fF5tWyKkRKWi4qaltXQQqVp3fVECzCyqzSRmlNBDbFVR2WppeVc9m0vLLWsrgyA4NBqS-fo5pA7tfrYmZTVJuyin16qkglW0pLXdFK3B5U6l3_7qTG6Qce9IqB-1lJcHdf6D3-G-AfV2Fv6DRZpa5A</recordid><startdate>20201124</startdate><enddate>20201124</enddate><creator>Fernandes, Natércia C. P.</creator><creator>Fernandes, Florbela P.</creator><creator>Romanenko, Andrey</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20201124</creationdate><title>Application of mixed integer nonlinear programming for system identification</title><author>Fernandes, Natércia C. P. ; Fernandes, Florbela P. ; Romanenko, Andrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p314t-83eb490b08a39cd1a60e7c8a17a5363e1f8c372a7f557dbd6f3f498e00650baf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Global optimization</topic><topic>Mixed integer</topic><topic>Nonlinear control</topic><topic>Nonlinear programming</topic><topic>Predictive control</topic><topic>System identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandes, Natércia C. P.</creatorcontrib><creatorcontrib>Fernandes, Florbela P.</creatorcontrib><creatorcontrib>Romanenko, Andrey</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandes, Natércia C. P.</au><au>Fernandes, Florbela P.</au><au>Romanenko, Andrey</au><au>Simos, Theodore</au><au>Tsitouras, Charalambos</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application of mixed integer nonlinear programming for system identification</atitle><btitle>AIP conference proceedings</btitle><date>2020-11-24</date><risdate>2020</risdate><volume>2293</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>This work describes a method of deadtime approximation in dynamic systems, particularly in the context of nonlinear model predictive control based on mechanistic models where the differentiability of the equations must be ensured. The resulting system identification system is solved using the BBMCSFilter (Branch and Bound based on a Multistart Coordinate Search Filter) global optimization algorithm to determine the order and the parameters of the resulting model, taking into account not only the model-plant mismatch but also the model complexity and the resulting computation time. The application of the method is illustrated with a simulated example of a chemical process unit.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0026410</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2020, Vol.2293 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0026410
source AIP Journals Complete
subjects Algorithms
Approximation
Global optimization
Mixed integer
Nonlinear control
Nonlinear programming
Predictive control
System identification
title Application of mixed integer nonlinear programming for system identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A24%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20of%20mixed%20integer%20nonlinear%20programming%20for%20system%20identification&rft.btitle=AIP%20conference%20proceedings&rft.au=Fernandes,%20Nat%C3%A9rcia%20C.%20P.&rft.date=2020-11-24&rft.volume=2293&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0026410&rft_dat=%3Cproquest_scita%3E2464232593%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464232593&rft_id=info:pmid/&rfr_iscdi=true