Empirical method for modeling crystal lattice parameters of A2XY6 cubic crystals using grid search-based extreme learning machine

The lattice parameters of A2XY6 (A = K, Cs, Rb, and Tl; X = tetravalent cation; Y = F, Cl, Br, and I) cubic crystals play significant roles in designing materials for specific technological applications and uniquely describe the material crystal structure. Despite the importance of its lattice param...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2020-11, Vol.128 (18)
Hauptverfasser: Ibn Shamsah, Sami M., Owolabi, Taoreed O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 18
container_start_page
container_title Journal of applied physics
container_volume 128
creator Ibn Shamsah, Sami M.
Owolabi, Taoreed O.
description The lattice parameters of A2XY6 (A = K, Cs, Rb, and Tl; X = tetravalent cation; Y = F, Cl, Br, and I) cubic crystals play significant roles in designing materials for specific technological applications and uniquely describe the material crystal structure. Despite the importance of its lattice parameters, the experimental determination of these parameters requires special sophisticated equipment, while the first principle calculation consumes appreciable time and might need complex software packages. The existing empirical relation in the literature is characterized by large percentage deviation, and the recently proposed machine learning support vector regression method cannot be empirically implemented on new compounds. This present work fills the research gap through the development of empirical relation between the lattice parameters, electronegativity and ionic radii of the constituting ions using extreme learning machine (ELM) with the grid search (GS) hyper-parameters optimization method. The proposed model is developed through the analysis of atomic structural properties of 85 crystals that serve as representatives of the A2XY6 group. On the basis of a mean absolute percentage error, the developed GS-ELM model outperforms the existing Brik and Kityk [J. Phys. Chem. Solids 72(11), 1256–1260 (2011)] model with a percentage improvement of 58.37%, while it performs better than Alade et al. [J. Appl. Phys. 127(1), 15303 (2020)] model with the percentage enhancement of 37.90%. The outstanding performance of the proposed GS-ELM model coupled with its ease of implementation would be of great significance by enhancing the search for new materials tailored to targeted application and preventing lattice constant mismatch in thin film fabrication.
doi_str_mv 10.1063/5.0024595
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0024595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2459470181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c172f-98b19d84c82b3841527edcb8aee8605ef8b10dd81988f11c10a5d246871cc8b63</originalsourceid><addsrcrecordid>eNqd0E1LxDAQBuAgCq6rB_9BwJNC10zbtOlxWfyCBS8KeippMt3Nsm1q0op79J-bsivePQ3MPDMDLyGXwGbAsuSWzxiLU17wIzIBJooo55wdk0noQiSKvDglZ95vGAMQSTEh33dNZ5xRcksb7NdW09o62liNW9OuqHI734fZVva9UUg76WRw6Dy1NZ3Hb-8ZVUNl1K_0dPDj4soZTT1Kp9ZRJT1qil-9wwbpNjTbkTRSrU2L5-SkDnt4cahT8np_97J4jJbPD0-L-TJSkMd1VIgKCi1SJeIqESnwOEetKiERRcY41mHOtBZQCFEDKGCS6zjNRA5KiSpLpuRqf7dz9mNA35cbO7g2vCzHwNKcgYCgrvdKOeu9w7rsnGmk25XAyjHhkpeHhIO92VuvTC97Y9v_4U_r_mDZ6Tr5AV6Div8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2459470181</pqid></control><display><type>article</type><title>Empirical method for modeling crystal lattice parameters of A2XY6 cubic crystals using grid search-based extreme learning machine</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ibn Shamsah, Sami M. ; Owolabi, Taoreed O.</creator><creatorcontrib>Ibn Shamsah, Sami M. ; Owolabi, Taoreed O.</creatorcontrib><description>The lattice parameters of A2XY6 (A = K, Cs, Rb, and Tl; X = tetravalent cation; Y = F, Cl, Br, and I) cubic crystals play significant roles in designing materials for specific technological applications and uniquely describe the material crystal structure. Despite the importance of its lattice parameters, the experimental determination of these parameters requires special sophisticated equipment, while the first principle calculation consumes appreciable time and might need complex software packages. The existing empirical relation in the literature is characterized by large percentage deviation, and the recently proposed machine learning support vector regression method cannot be empirically implemented on new compounds. This present work fills the research gap through the development of empirical relation between the lattice parameters, electronegativity and ionic radii of the constituting ions using extreme learning machine (ELM) with the grid search (GS) hyper-parameters optimization method. The proposed model is developed through the analysis of atomic structural properties of 85 crystals that serve as representatives of the A2XY6 group. On the basis of a mean absolute percentage error, the developed GS-ELM model outperforms the existing Brik and Kityk [J. Phys. Chem. Solids 72(11), 1256–1260 (2011)] model with a percentage improvement of 58.37%, while it performs better than Alade et al. [J. Appl. Phys. 127(1), 15303 (2020)] model with the percentage enhancement of 37.90%. The outstanding performance of the proposed GS-ELM model coupled with its ease of implementation would be of great significance by enhancing the search for new materials tailored to targeted application and preventing lattice constant mismatch in thin film fabrication.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0024595</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Artificial neural networks ; Crystal lattices ; Crystal structure ; Crystals ; Cubic lattice ; Electronegativity ; Empirical analysis ; First principles ; Lattice parameters ; Machine learning ; Mathematical models ; Optimization ; Regression analysis ; Searching ; Support vector machines ; Thin films</subject><ispartof>Journal of applied physics, 2020-11, Vol.128 (18)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c172f-98b19d84c82b3841527edcb8aee8605ef8b10dd81988f11c10a5d246871cc8b63</citedby><cites>FETCH-LOGICAL-c172f-98b19d84c82b3841527edcb8aee8605ef8b10dd81988f11c10a5d246871cc8b63</cites><orcidid>0000-0002-6666-1755 ; 0000-0002-8965-1330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0024595$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76130</link.rule.ids></links><search><creatorcontrib>Ibn Shamsah, Sami M.</creatorcontrib><creatorcontrib>Owolabi, Taoreed O.</creatorcontrib><title>Empirical method for modeling crystal lattice parameters of A2XY6 cubic crystals using grid search-based extreme learning machine</title><title>Journal of applied physics</title><description>The lattice parameters of A2XY6 (A = K, Cs, Rb, and Tl; X = tetravalent cation; Y = F, Cl, Br, and I) cubic crystals play significant roles in designing materials for specific technological applications and uniquely describe the material crystal structure. Despite the importance of its lattice parameters, the experimental determination of these parameters requires special sophisticated equipment, while the first principle calculation consumes appreciable time and might need complex software packages. The existing empirical relation in the literature is characterized by large percentage deviation, and the recently proposed machine learning support vector regression method cannot be empirically implemented on new compounds. This present work fills the research gap through the development of empirical relation between the lattice parameters, electronegativity and ionic radii of the constituting ions using extreme learning machine (ELM) with the grid search (GS) hyper-parameters optimization method. The proposed model is developed through the analysis of atomic structural properties of 85 crystals that serve as representatives of the A2XY6 group. On the basis of a mean absolute percentage error, the developed GS-ELM model outperforms the existing Brik and Kityk [J. Phys. Chem. Solids 72(11), 1256–1260 (2011)] model with a percentage improvement of 58.37%, while it performs better than Alade et al. [J. Appl. Phys. 127(1), 15303 (2020)] model with the percentage enhancement of 37.90%. The outstanding performance of the proposed GS-ELM model coupled with its ease of implementation would be of great significance by enhancing the search for new materials tailored to targeted application and preventing lattice constant mismatch in thin film fabrication.</description><subject>Applied physics</subject><subject>Artificial neural networks</subject><subject>Crystal lattices</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Cubic lattice</subject><subject>Electronegativity</subject><subject>Empirical analysis</subject><subject>First principles</subject><subject>Lattice parameters</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Regression analysis</subject><subject>Searching</subject><subject>Support vector machines</subject><subject>Thin films</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LxDAQBuAgCq6rB_9BwJNC10zbtOlxWfyCBS8KeippMt3Nsm1q0op79J-bsivePQ3MPDMDLyGXwGbAsuSWzxiLU17wIzIBJooo55wdk0noQiSKvDglZ95vGAMQSTEh33dNZ5xRcksb7NdW09o62liNW9OuqHI734fZVva9UUg76WRw6Dy1NZ3Hb-8ZVUNl1K_0dPDj4soZTT1Kp9ZRJT1qil-9wwbpNjTbkTRSrU2L5-SkDnt4cahT8np_97J4jJbPD0-L-TJSkMd1VIgKCi1SJeIqESnwOEetKiERRcY41mHOtBZQCFEDKGCS6zjNRA5KiSpLpuRqf7dz9mNA35cbO7g2vCzHwNKcgYCgrvdKOeu9w7rsnGmk25XAyjHhkpeHhIO92VuvTC97Y9v_4U_r_mDZ6Tr5AV6Div8</recordid><startdate>20201114</startdate><enddate>20201114</enddate><creator>Ibn Shamsah, Sami M.</creator><creator>Owolabi, Taoreed O.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6666-1755</orcidid><orcidid>https://orcid.org/0000-0002-8965-1330</orcidid></search><sort><creationdate>20201114</creationdate><title>Empirical method for modeling crystal lattice parameters of A2XY6 cubic crystals using grid search-based extreme learning machine</title><author>Ibn Shamsah, Sami M. ; Owolabi, Taoreed O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c172f-98b19d84c82b3841527edcb8aee8605ef8b10dd81988f11c10a5d246871cc8b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Artificial neural networks</topic><topic>Crystal lattices</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Cubic lattice</topic><topic>Electronegativity</topic><topic>Empirical analysis</topic><topic>First principles</topic><topic>Lattice parameters</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Regression analysis</topic><topic>Searching</topic><topic>Support vector machines</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ibn Shamsah, Sami M.</creatorcontrib><creatorcontrib>Owolabi, Taoreed O.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ibn Shamsah, Sami M.</au><au>Owolabi, Taoreed O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical method for modeling crystal lattice parameters of A2XY6 cubic crystals using grid search-based extreme learning machine</atitle><jtitle>Journal of applied physics</jtitle><date>2020-11-14</date><risdate>2020</risdate><volume>128</volume><issue>18</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The lattice parameters of A2XY6 (A = K, Cs, Rb, and Tl; X = tetravalent cation; Y = F, Cl, Br, and I) cubic crystals play significant roles in designing materials for specific technological applications and uniquely describe the material crystal structure. Despite the importance of its lattice parameters, the experimental determination of these parameters requires special sophisticated equipment, while the first principle calculation consumes appreciable time and might need complex software packages. The existing empirical relation in the literature is characterized by large percentage deviation, and the recently proposed machine learning support vector regression method cannot be empirically implemented on new compounds. This present work fills the research gap through the development of empirical relation between the lattice parameters, electronegativity and ionic radii of the constituting ions using extreme learning machine (ELM) with the grid search (GS) hyper-parameters optimization method. The proposed model is developed through the analysis of atomic structural properties of 85 crystals that serve as representatives of the A2XY6 group. On the basis of a mean absolute percentage error, the developed GS-ELM model outperforms the existing Brik and Kityk [J. Phys. Chem. Solids 72(11), 1256–1260 (2011)] model with a percentage improvement of 58.37%, while it performs better than Alade et al. [J. Appl. Phys. 127(1), 15303 (2020)] model with the percentage enhancement of 37.90%. The outstanding performance of the proposed GS-ELM model coupled with its ease of implementation would be of great significance by enhancing the search for new materials tailored to targeted application and preventing lattice constant mismatch in thin film fabrication.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0024595</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6666-1755</orcidid><orcidid>https://orcid.org/0000-0002-8965-1330</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2020-11, Vol.128 (18)
issn 0021-8979
1089-7550
language eng
recordid cdi_scitation_primary_10_1063_5_0024595
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Artificial neural networks
Crystal lattices
Crystal structure
Crystals
Cubic lattice
Electronegativity
Empirical analysis
First principles
Lattice parameters
Machine learning
Mathematical models
Optimization
Regression analysis
Searching
Support vector machines
Thin films
title Empirical method for modeling crystal lattice parameters of A2XY6 cubic crystals using grid search-based extreme learning machine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T06%3A43%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20method%20for%20modeling%20crystal%20lattice%20parameters%20of%20A2XY6%20cubic%20crystals%20using%20grid%20search-based%20extreme%20learning%20machine&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Ibn%20Shamsah,%20Sami%20M.&rft.date=2020-11-14&rft.volume=128&rft.issue=18&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0024595&rft_dat=%3Cproquest_scita%3E2459470181%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2459470181&rft_id=info:pmid/&rfr_iscdi=true