Empirical method for modeling crystal lattice parameters of A2XY6 cubic crystals using grid search-based extreme learning machine
The lattice parameters of A2XY6 (A = K, Cs, Rb, and Tl; X = tetravalent cation; Y = F, Cl, Br, and I) cubic crystals play significant roles in designing materials for specific technological applications and uniquely describe the material crystal structure. Despite the importance of its lattice param...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2020-11, Vol.128 (18) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 18 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 128 |
creator | Ibn Shamsah, Sami M. Owolabi, Taoreed O. |
description | The lattice parameters of A2XY6 (A = K, Cs, Rb, and Tl; X = tetravalent cation; Y = F, Cl, Br, and I) cubic crystals play significant roles in designing materials for specific technological applications and uniquely describe the material crystal structure. Despite the importance of its lattice parameters, the experimental determination of these parameters requires special sophisticated equipment, while the first principle calculation consumes appreciable time and might need complex software packages. The existing empirical relation in the literature is characterized by large percentage deviation, and the recently proposed machine learning support vector regression method cannot be empirically implemented on new compounds. This present work fills the research gap through the development of empirical relation between the lattice parameters, electronegativity and ionic radii of the constituting ions using extreme learning machine (ELM) with the grid search (GS) hyper-parameters optimization method. The proposed model is developed through the analysis of atomic structural properties of 85 crystals that serve as representatives of the A2XY6 group. On the basis of a mean absolute percentage error, the developed GS-ELM model outperforms the existing Brik and Kityk [J. Phys. Chem. Solids 72(11), 1256–1260 (2011)] model with a percentage improvement of 58.37%, while it performs better than Alade et al. [J. Appl. Phys. 127(1), 15303 (2020)] model with the percentage enhancement of 37.90%. The outstanding performance of the proposed GS-ELM model coupled with its ease of implementation would be of great significance by enhancing the search for new materials tailored to targeted application and preventing lattice constant mismatch in thin film fabrication. |
doi_str_mv | 10.1063/5.0024595 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0024595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2459470181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c172f-98b19d84c82b3841527edcb8aee8605ef8b10dd81988f11c10a5d246871cc8b63</originalsourceid><addsrcrecordid>eNqd0E1LxDAQBuAgCq6rB_9BwJNC10zbtOlxWfyCBS8KeippMt3Nsm1q0op79J-bsivePQ3MPDMDLyGXwGbAsuSWzxiLU17wIzIBJooo55wdk0noQiSKvDglZ95vGAMQSTEh33dNZ5xRcksb7NdW09o62liNW9OuqHI734fZVva9UUg76WRw6Dy1NZ3Hb-8ZVUNl1K_0dPDj4soZTT1Kp9ZRJT1qil-9wwbpNjTbkTRSrU2L5-SkDnt4cahT8np_97J4jJbPD0-L-TJSkMd1VIgKCi1SJeIqESnwOEetKiERRcY41mHOtBZQCFEDKGCS6zjNRA5KiSpLpuRqf7dz9mNA35cbO7g2vCzHwNKcgYCgrvdKOeu9w7rsnGmk25XAyjHhkpeHhIO92VuvTC97Y9v_4U_r_mDZ6Tr5AV6Div8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2459470181</pqid></control><display><type>article</type><title>Empirical method for modeling crystal lattice parameters of A2XY6 cubic crystals using grid search-based extreme learning machine</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ibn Shamsah, Sami M. ; Owolabi, Taoreed O.</creator><creatorcontrib>Ibn Shamsah, Sami M. ; Owolabi, Taoreed O.</creatorcontrib><description>The lattice parameters of A2XY6 (A = K, Cs, Rb, and Tl; X = tetravalent cation; Y = F, Cl, Br, and I) cubic crystals play significant roles in designing materials for specific technological applications and uniquely describe the material crystal structure. Despite the importance of its lattice parameters, the experimental determination of these parameters requires special sophisticated equipment, while the first principle calculation consumes appreciable time and might need complex software packages. The existing empirical relation in the literature is characterized by large percentage deviation, and the recently proposed machine learning support vector regression method cannot be empirically implemented on new compounds. This present work fills the research gap through the development of empirical relation between the lattice parameters, electronegativity and ionic radii of the constituting ions using extreme learning machine (ELM) with the grid search (GS) hyper-parameters optimization method. The proposed model is developed through the analysis of atomic structural properties of 85 crystals that serve as representatives of the A2XY6 group. On the basis of a mean absolute percentage error, the developed GS-ELM model outperforms the existing Brik and Kityk [J. Phys. Chem. Solids 72(11), 1256–1260 (2011)] model with a percentage improvement of 58.37%, while it performs better than Alade et al. [J. Appl. Phys. 127(1), 15303 (2020)] model with the percentage enhancement of 37.90%. The outstanding performance of the proposed GS-ELM model coupled with its ease of implementation would be of great significance by enhancing the search for new materials tailored to targeted application and preventing lattice constant mismatch in thin film fabrication.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0024595</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Artificial neural networks ; Crystal lattices ; Crystal structure ; Crystals ; Cubic lattice ; Electronegativity ; Empirical analysis ; First principles ; Lattice parameters ; Machine learning ; Mathematical models ; Optimization ; Regression analysis ; Searching ; Support vector machines ; Thin films</subject><ispartof>Journal of applied physics, 2020-11, Vol.128 (18)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c172f-98b19d84c82b3841527edcb8aee8605ef8b10dd81988f11c10a5d246871cc8b63</citedby><cites>FETCH-LOGICAL-c172f-98b19d84c82b3841527edcb8aee8605ef8b10dd81988f11c10a5d246871cc8b63</cites><orcidid>0000-0002-6666-1755 ; 0000-0002-8965-1330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0024595$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76130</link.rule.ids></links><search><creatorcontrib>Ibn Shamsah, Sami M.</creatorcontrib><creatorcontrib>Owolabi, Taoreed O.</creatorcontrib><title>Empirical method for modeling crystal lattice parameters of A2XY6 cubic crystals using grid search-based extreme learning machine</title><title>Journal of applied physics</title><description>The lattice parameters of A2XY6 (A = K, Cs, Rb, and Tl; X = tetravalent cation; Y = F, Cl, Br, and I) cubic crystals play significant roles in designing materials for specific technological applications and uniquely describe the material crystal structure. Despite the importance of its lattice parameters, the experimental determination of these parameters requires special sophisticated equipment, while the first principle calculation consumes appreciable time and might need complex software packages. The existing empirical relation in the literature is characterized by large percentage deviation, and the recently proposed machine learning support vector regression method cannot be empirically implemented on new compounds. This present work fills the research gap through the development of empirical relation between the lattice parameters, electronegativity and ionic radii of the constituting ions using extreme learning machine (ELM) with the grid search (GS) hyper-parameters optimization method. The proposed model is developed through the analysis of atomic structural properties of 85 crystals that serve as representatives of the A2XY6 group. On the basis of a mean absolute percentage error, the developed GS-ELM model outperforms the existing Brik and Kityk [J. Phys. Chem. Solids 72(11), 1256–1260 (2011)] model with a percentage improvement of 58.37%, while it performs better than Alade et al. [J. Appl. Phys. 127(1), 15303 (2020)] model with the percentage enhancement of 37.90%. The outstanding performance of the proposed GS-ELM model coupled with its ease of implementation would be of great significance by enhancing the search for new materials tailored to targeted application and preventing lattice constant mismatch in thin film fabrication.</description><subject>Applied physics</subject><subject>Artificial neural networks</subject><subject>Crystal lattices</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Cubic lattice</subject><subject>Electronegativity</subject><subject>Empirical analysis</subject><subject>First principles</subject><subject>Lattice parameters</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Regression analysis</subject><subject>Searching</subject><subject>Support vector machines</subject><subject>Thin films</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LxDAQBuAgCq6rB_9BwJNC10zbtOlxWfyCBS8KeippMt3Nsm1q0op79J-bsivePQ3MPDMDLyGXwGbAsuSWzxiLU17wIzIBJooo55wdk0noQiSKvDglZ95vGAMQSTEh33dNZ5xRcksb7NdW09o62liNW9OuqHI734fZVva9UUg76WRw6Dy1NZ3Hb-8ZVUNl1K_0dPDj4soZTT1Kp9ZRJT1qil-9wwbpNjTbkTRSrU2L5-SkDnt4cahT8np_97J4jJbPD0-L-TJSkMd1VIgKCi1SJeIqESnwOEetKiERRcY41mHOtBZQCFEDKGCS6zjNRA5KiSpLpuRqf7dz9mNA35cbO7g2vCzHwNKcgYCgrvdKOeu9w7rsnGmk25XAyjHhkpeHhIO92VuvTC97Y9v_4U_r_mDZ6Tr5AV6Div8</recordid><startdate>20201114</startdate><enddate>20201114</enddate><creator>Ibn Shamsah, Sami M.</creator><creator>Owolabi, Taoreed O.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6666-1755</orcidid><orcidid>https://orcid.org/0000-0002-8965-1330</orcidid></search><sort><creationdate>20201114</creationdate><title>Empirical method for modeling crystal lattice parameters of A2XY6 cubic crystals using grid search-based extreme learning machine</title><author>Ibn Shamsah, Sami M. ; Owolabi, Taoreed O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c172f-98b19d84c82b3841527edcb8aee8605ef8b10dd81988f11c10a5d246871cc8b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Artificial neural networks</topic><topic>Crystal lattices</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Cubic lattice</topic><topic>Electronegativity</topic><topic>Empirical analysis</topic><topic>First principles</topic><topic>Lattice parameters</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Regression analysis</topic><topic>Searching</topic><topic>Support vector machines</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ibn Shamsah, Sami M.</creatorcontrib><creatorcontrib>Owolabi, Taoreed O.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ibn Shamsah, Sami M.</au><au>Owolabi, Taoreed O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical method for modeling crystal lattice parameters of A2XY6 cubic crystals using grid search-based extreme learning machine</atitle><jtitle>Journal of applied physics</jtitle><date>2020-11-14</date><risdate>2020</risdate><volume>128</volume><issue>18</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The lattice parameters of A2XY6 (A = K, Cs, Rb, and Tl; X = tetravalent cation; Y = F, Cl, Br, and I) cubic crystals play significant roles in designing materials for specific technological applications and uniquely describe the material crystal structure. Despite the importance of its lattice parameters, the experimental determination of these parameters requires special sophisticated equipment, while the first principle calculation consumes appreciable time and might need complex software packages. The existing empirical relation in the literature is characterized by large percentage deviation, and the recently proposed machine learning support vector regression method cannot be empirically implemented on new compounds. This present work fills the research gap through the development of empirical relation between the lattice parameters, electronegativity and ionic radii of the constituting ions using extreme learning machine (ELM) with the grid search (GS) hyper-parameters optimization method. The proposed model is developed through the analysis of atomic structural properties of 85 crystals that serve as representatives of the A2XY6 group. On the basis of a mean absolute percentage error, the developed GS-ELM model outperforms the existing Brik and Kityk [J. Phys. Chem. Solids 72(11), 1256–1260 (2011)] model with a percentage improvement of 58.37%, while it performs better than Alade et al. [J. Appl. Phys. 127(1), 15303 (2020)] model with the percentage enhancement of 37.90%. The outstanding performance of the proposed GS-ELM model coupled with its ease of implementation would be of great significance by enhancing the search for new materials tailored to targeted application and preventing lattice constant mismatch in thin film fabrication.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0024595</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6666-1755</orcidid><orcidid>https://orcid.org/0000-0002-8965-1330</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2020-11, Vol.128 (18) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0024595 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Artificial neural networks Crystal lattices Crystal structure Crystals Cubic lattice Electronegativity Empirical analysis First principles Lattice parameters Machine learning Mathematical models Optimization Regression analysis Searching Support vector machines Thin films |
title | Empirical method for modeling crystal lattice parameters of A2XY6 cubic crystals using grid search-based extreme learning machine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T06%3A43%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20method%20for%20modeling%20crystal%20lattice%20parameters%20of%20A2XY6%20cubic%20crystals%20using%20grid%20search-based%20extreme%20learning%20machine&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Ibn%20Shamsah,%20Sami%20M.&rft.date=2020-11-14&rft.volume=128&rft.issue=18&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0024595&rft_dat=%3Cproquest_scita%3E2459470181%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2459470181&rft_id=info:pmid/&rfr_iscdi=true |