Semidry release of nanomembranes for tubular origami

Three-dimensional tubular origami, fabricated by the self-rolling of functional nanomembranes, is of great interest due to its numerous opportunities for applications in photochemical sensing, intelligent actuators, microrobots, electronics, and many others. A continuing opportunity of this area is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2020-09, Vol.117 (11)
Hauptverfasser: Guo, Qinglei, Wei, Zhihuan, Xue, Zhongying, Jiang, Chengming, Zhao, Haonan, Zhang, Yifei, Wang, Gang, Chen, Da, Di, Zengfeng, Mei, Yongfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Applied physics letters
container_volume 117
creator Guo, Qinglei
Wei, Zhihuan
Xue, Zhongying
Jiang, Chengming
Zhao, Haonan
Zhang, Yifei
Wang, Gang
Chen, Da
Di, Zengfeng
Mei, Yongfeng
description Three-dimensional tubular origami, fabricated by the self-rolling of functional nanomembranes, is of great interest due to its numerous opportunities for applications in photochemical sensing, intelligent actuators, microrobots, electronics, and many others. A continuing opportunity of this area is in the development of strategies for fabricating tubular origami, in solvent-free and low-cost conditions. This paper proposed a semidry release approach, allowing for the sacrificial layer-free, vapor-assisted self-rolling, and recyclable use of substrates, to create microscale tubular origami. Interface engineering designs that involve hydrophilic and hydrophobic material stacks are introduced to realize the semidry release of nanomembranes, which finally self-roll into multifunctional tubular structures. Systematic experimental and theoretical studies demonstrate the controllability of their dimensions. Finally, a bioresorbable microtube with potential for transient implantable devices is demonstrated. Our present work adds to the portfolio of routes for the construction of tubular origami, which can be utilized as functional platforms for fundamental studies and practical applications.
doi_str_mv 10.1063/5.0023096
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0023096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2443945442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-bafb2bb6df8c074b442e19a164044ddf4286e0bc61b4611eac3adfd56b35a4ce3</originalsourceid><addsrcrecordid>eNp90EtLw0AUBeBBFKyPhf8g4Eoh9U7m0WYpxRcUXKjr4c5LUppMvZMI_fdGWnQhuLpc-DgHDmMXHKYctLhRU4BKQK0P2ITDbFYKzueHbAIAotS14sfsJOfV-KpKiAmTL6FtPG0LCuuAORQpFh12qQ2tJexCLmKioh_ssEYqEjXv2DZn7CjiOofz_T1lb_d3r4vHcvn88LS4XZZO1KIvLUZbWat9nDuYSStlFXiNXEuQ0vsoq7kOYJ3mVmrOAzqBPnqlrVAoXRCn7HKXu6H0MYTcm1UaqBsrTSWlqKUaI0d1tVOOUs4UotlQ0yJtDQfzPYpRZj_KaK93Nrumx75J3Q_-TPQLzcbH__Df5C9sxG-a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443945442</pqid></control><display><type>article</type><title>Semidry release of nanomembranes for tubular origami</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Guo, Qinglei ; Wei, Zhihuan ; Xue, Zhongying ; Jiang, Chengming ; Zhao, Haonan ; Zhang, Yifei ; Wang, Gang ; Chen, Da ; Di, Zengfeng ; Mei, Yongfeng</creator><creatorcontrib>Guo, Qinglei ; Wei, Zhihuan ; Xue, Zhongying ; Jiang, Chengming ; Zhao, Haonan ; Zhang, Yifei ; Wang, Gang ; Chen, Da ; Di, Zengfeng ; Mei, Yongfeng</creatorcontrib><description>Three-dimensional tubular origami, fabricated by the self-rolling of functional nanomembranes, is of great interest due to its numerous opportunities for applications in photochemical sensing, intelligent actuators, microrobots, electronics, and many others. A continuing opportunity of this area is in the development of strategies for fabricating tubular origami, in solvent-free and low-cost conditions. This paper proposed a semidry release approach, allowing for the sacrificial layer-free, vapor-assisted self-rolling, and recyclable use of substrates, to create microscale tubular origami. Interface engineering designs that involve hydrophilic and hydrophobic material stacks are introduced to realize the semidry release of nanomembranes, which finally self-roll into multifunctional tubular structures. Systematic experimental and theoretical studies demonstrate the controllability of their dimensions. Finally, a bioresorbable microtube with potential for transient implantable devices is demonstrated. Our present work adds to the portfolio of routes for the construction of tubular origami, which can be utilized as functional platforms for fundamental studies and practical applications.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0023096</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Actuators ; Applied physics ; Biocompatibility ; Biomedical materials ; Controllability ; Electronic implants ; Microrobots ; Substrates</subject><ispartof>Applied physics letters, 2020-09, Vol.117 (11)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-bafb2bb6df8c074b442e19a164044ddf4286e0bc61b4611eac3adfd56b35a4ce3</citedby><cites>FETCH-LOGICAL-c393t-bafb2bb6df8c074b442e19a164044ddf4286e0bc61b4611eac3adfd56b35a4ce3</cites><orcidid>0000-0001-6077-8525 ; 0000-0002-6319-037X ; 0000-0003-2779-5774 ; 0000-0002-9357-5107</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0023096$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Guo, Qinglei</creatorcontrib><creatorcontrib>Wei, Zhihuan</creatorcontrib><creatorcontrib>Xue, Zhongying</creatorcontrib><creatorcontrib>Jiang, Chengming</creatorcontrib><creatorcontrib>Zhao, Haonan</creatorcontrib><creatorcontrib>Zhang, Yifei</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Chen, Da</creatorcontrib><creatorcontrib>Di, Zengfeng</creatorcontrib><creatorcontrib>Mei, Yongfeng</creatorcontrib><title>Semidry release of nanomembranes for tubular origami</title><title>Applied physics letters</title><description>Three-dimensional tubular origami, fabricated by the self-rolling of functional nanomembranes, is of great interest due to its numerous opportunities for applications in photochemical sensing, intelligent actuators, microrobots, electronics, and many others. A continuing opportunity of this area is in the development of strategies for fabricating tubular origami, in solvent-free and low-cost conditions. This paper proposed a semidry release approach, allowing for the sacrificial layer-free, vapor-assisted self-rolling, and recyclable use of substrates, to create microscale tubular origami. Interface engineering designs that involve hydrophilic and hydrophobic material stacks are introduced to realize the semidry release of nanomembranes, which finally self-roll into multifunctional tubular structures. Systematic experimental and theoretical studies demonstrate the controllability of their dimensions. Finally, a bioresorbable microtube with potential for transient implantable devices is demonstrated. Our present work adds to the portfolio of routes for the construction of tubular origami, which can be utilized as functional platforms for fundamental studies and practical applications.</description><subject>Actuators</subject><subject>Applied physics</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Controllability</subject><subject>Electronic implants</subject><subject>Microrobots</subject><subject>Substrates</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90EtLw0AUBeBBFKyPhf8g4Eoh9U7m0WYpxRcUXKjr4c5LUppMvZMI_fdGWnQhuLpc-DgHDmMXHKYctLhRU4BKQK0P2ITDbFYKzueHbAIAotS14sfsJOfV-KpKiAmTL6FtPG0LCuuAORQpFh12qQ2tJexCLmKioh_ssEYqEjXv2DZn7CjiOofz_T1lb_d3r4vHcvn88LS4XZZO1KIvLUZbWat9nDuYSStlFXiNXEuQ0vsoq7kOYJ3mVmrOAzqBPnqlrVAoXRCn7HKXu6H0MYTcm1UaqBsrTSWlqKUaI0d1tVOOUs4UotlQ0yJtDQfzPYpRZj_KaK93Nrumx75J3Q_-TPQLzcbH__Df5C9sxG-a</recordid><startdate>20200914</startdate><enddate>20200914</enddate><creator>Guo, Qinglei</creator><creator>Wei, Zhihuan</creator><creator>Xue, Zhongying</creator><creator>Jiang, Chengming</creator><creator>Zhao, Haonan</creator><creator>Zhang, Yifei</creator><creator>Wang, Gang</creator><creator>Chen, Da</creator><creator>Di, Zengfeng</creator><creator>Mei, Yongfeng</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6077-8525</orcidid><orcidid>https://orcid.org/0000-0002-6319-037X</orcidid><orcidid>https://orcid.org/0000-0003-2779-5774</orcidid><orcidid>https://orcid.org/0000-0002-9357-5107</orcidid></search><sort><creationdate>20200914</creationdate><title>Semidry release of nanomembranes for tubular origami</title><author>Guo, Qinglei ; Wei, Zhihuan ; Xue, Zhongying ; Jiang, Chengming ; Zhao, Haonan ; Zhang, Yifei ; Wang, Gang ; Chen, Da ; Di, Zengfeng ; Mei, Yongfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-bafb2bb6df8c074b442e19a164044ddf4286e0bc61b4611eac3adfd56b35a4ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actuators</topic><topic>Applied physics</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Controllability</topic><topic>Electronic implants</topic><topic>Microrobots</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Qinglei</creatorcontrib><creatorcontrib>Wei, Zhihuan</creatorcontrib><creatorcontrib>Xue, Zhongying</creatorcontrib><creatorcontrib>Jiang, Chengming</creatorcontrib><creatorcontrib>Zhao, Haonan</creatorcontrib><creatorcontrib>Zhang, Yifei</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Chen, Da</creatorcontrib><creatorcontrib>Di, Zengfeng</creatorcontrib><creatorcontrib>Mei, Yongfeng</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Qinglei</au><au>Wei, Zhihuan</au><au>Xue, Zhongying</au><au>Jiang, Chengming</au><au>Zhao, Haonan</au><au>Zhang, Yifei</au><au>Wang, Gang</au><au>Chen, Da</au><au>Di, Zengfeng</au><au>Mei, Yongfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semidry release of nanomembranes for tubular origami</atitle><jtitle>Applied physics letters</jtitle><date>2020-09-14</date><risdate>2020</risdate><volume>117</volume><issue>11</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Three-dimensional tubular origami, fabricated by the self-rolling of functional nanomembranes, is of great interest due to its numerous opportunities for applications in photochemical sensing, intelligent actuators, microrobots, electronics, and many others. A continuing opportunity of this area is in the development of strategies for fabricating tubular origami, in solvent-free and low-cost conditions. This paper proposed a semidry release approach, allowing for the sacrificial layer-free, vapor-assisted self-rolling, and recyclable use of substrates, to create microscale tubular origami. Interface engineering designs that involve hydrophilic and hydrophobic material stacks are introduced to realize the semidry release of nanomembranes, which finally self-roll into multifunctional tubular structures. Systematic experimental and theoretical studies demonstrate the controllability of their dimensions. Finally, a bioresorbable microtube with potential for transient implantable devices is demonstrated. Our present work adds to the portfolio of routes for the construction of tubular origami, which can be utilized as functional platforms for fundamental studies and practical applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0023096</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6077-8525</orcidid><orcidid>https://orcid.org/0000-0002-6319-037X</orcidid><orcidid>https://orcid.org/0000-0003-2779-5774</orcidid><orcidid>https://orcid.org/0000-0002-9357-5107</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2020-09, Vol.117 (11)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_5_0023096
source AIP Journals Complete; Alma/SFX Local Collection
subjects Actuators
Applied physics
Biocompatibility
Biomedical materials
Controllability
Electronic implants
Microrobots
Substrates
title Semidry release of nanomembranes for tubular origami
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T22%3A48%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semidry%20release%20of%20nanomembranes%20for%20tubular%20origami&rft.jtitle=Applied%20physics%20letters&rft.au=Guo,%20Qinglei&rft.date=2020-09-14&rft.volume=117&rft.issue=11&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0023096&rft_dat=%3Cproquest_scita%3E2443945442%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443945442&rft_id=info:pmid/&rfr_iscdi=true