Semidry release of nanomembranes for tubular origami
Three-dimensional tubular origami, fabricated by the self-rolling of functional nanomembranes, is of great interest due to its numerous opportunities for applications in photochemical sensing, intelligent actuators, microrobots, electronics, and many others. A continuing opportunity of this area is...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2020-09, Vol.117 (11) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 117 |
creator | Guo, Qinglei Wei, Zhihuan Xue, Zhongying Jiang, Chengming Zhao, Haonan Zhang, Yifei Wang, Gang Chen, Da Di, Zengfeng Mei, Yongfeng |
description | Three-dimensional tubular origami, fabricated by the self-rolling of functional nanomembranes, is of great interest due to its numerous opportunities for applications in photochemical sensing, intelligent actuators, microrobots, electronics, and many others. A continuing opportunity of this area is in the development of strategies for fabricating tubular origami, in solvent-free and low-cost conditions. This paper proposed a semidry release approach, allowing for the sacrificial layer-free, vapor-assisted self-rolling, and recyclable use of substrates, to create microscale tubular origami. Interface engineering designs that involve hydrophilic and hydrophobic material stacks are introduced to realize the semidry release of nanomembranes, which finally self-roll into multifunctional tubular structures. Systematic experimental and theoretical studies demonstrate the controllability of their dimensions. Finally, a bioresorbable microtube with potential for transient implantable devices is demonstrated. Our present work adds to the portfolio of routes for the construction of tubular origami, which can be utilized as functional platforms for fundamental studies and practical applications. |
doi_str_mv | 10.1063/5.0023096 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0023096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2443945442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-bafb2bb6df8c074b442e19a164044ddf4286e0bc61b4611eac3adfd56b35a4ce3</originalsourceid><addsrcrecordid>eNp90EtLw0AUBeBBFKyPhf8g4Eoh9U7m0WYpxRcUXKjr4c5LUppMvZMI_fdGWnQhuLpc-DgHDmMXHKYctLhRU4BKQK0P2ITDbFYKzueHbAIAotS14sfsJOfV-KpKiAmTL6FtPG0LCuuAORQpFh12qQ2tJexCLmKioh_ssEYqEjXv2DZn7CjiOofz_T1lb_d3r4vHcvn88LS4XZZO1KIvLUZbWat9nDuYSStlFXiNXEuQ0vsoq7kOYJ3mVmrOAzqBPnqlrVAoXRCn7HKXu6H0MYTcm1UaqBsrTSWlqKUaI0d1tVOOUs4UotlQ0yJtDQfzPYpRZj_KaK93Nrumx75J3Q_-TPQLzcbH__Df5C9sxG-a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443945442</pqid></control><display><type>article</type><title>Semidry release of nanomembranes for tubular origami</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Guo, Qinglei ; Wei, Zhihuan ; Xue, Zhongying ; Jiang, Chengming ; Zhao, Haonan ; Zhang, Yifei ; Wang, Gang ; Chen, Da ; Di, Zengfeng ; Mei, Yongfeng</creator><creatorcontrib>Guo, Qinglei ; Wei, Zhihuan ; Xue, Zhongying ; Jiang, Chengming ; Zhao, Haonan ; Zhang, Yifei ; Wang, Gang ; Chen, Da ; Di, Zengfeng ; Mei, Yongfeng</creatorcontrib><description>Three-dimensional tubular origami, fabricated by the self-rolling of functional nanomembranes, is of great interest due to its numerous opportunities for applications in photochemical sensing, intelligent actuators, microrobots, electronics, and many others. A continuing opportunity of this area is in the development of strategies for fabricating tubular origami, in solvent-free and low-cost conditions. This paper proposed a semidry release approach, allowing for the sacrificial layer-free, vapor-assisted self-rolling, and recyclable use of substrates, to create microscale tubular origami. Interface engineering designs that involve hydrophilic and hydrophobic material stacks are introduced to realize the semidry release of nanomembranes, which finally self-roll into multifunctional tubular structures. Systematic experimental and theoretical studies demonstrate the controllability of their dimensions. Finally, a bioresorbable microtube with potential for transient implantable devices is demonstrated. Our present work adds to the portfolio of routes for the construction of tubular origami, which can be utilized as functional platforms for fundamental studies and practical applications.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0023096</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Actuators ; Applied physics ; Biocompatibility ; Biomedical materials ; Controllability ; Electronic implants ; Microrobots ; Substrates</subject><ispartof>Applied physics letters, 2020-09, Vol.117 (11)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-bafb2bb6df8c074b442e19a164044ddf4286e0bc61b4611eac3adfd56b35a4ce3</citedby><cites>FETCH-LOGICAL-c393t-bafb2bb6df8c074b442e19a164044ddf4286e0bc61b4611eac3adfd56b35a4ce3</cites><orcidid>0000-0001-6077-8525 ; 0000-0002-6319-037X ; 0000-0003-2779-5774 ; 0000-0002-9357-5107</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0023096$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Guo, Qinglei</creatorcontrib><creatorcontrib>Wei, Zhihuan</creatorcontrib><creatorcontrib>Xue, Zhongying</creatorcontrib><creatorcontrib>Jiang, Chengming</creatorcontrib><creatorcontrib>Zhao, Haonan</creatorcontrib><creatorcontrib>Zhang, Yifei</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Chen, Da</creatorcontrib><creatorcontrib>Di, Zengfeng</creatorcontrib><creatorcontrib>Mei, Yongfeng</creatorcontrib><title>Semidry release of nanomembranes for tubular origami</title><title>Applied physics letters</title><description>Three-dimensional tubular origami, fabricated by the self-rolling of functional nanomembranes, is of great interest due to its numerous opportunities for applications in photochemical sensing, intelligent actuators, microrobots, electronics, and many others. A continuing opportunity of this area is in the development of strategies for fabricating tubular origami, in solvent-free and low-cost conditions. This paper proposed a semidry release approach, allowing for the sacrificial layer-free, vapor-assisted self-rolling, and recyclable use of substrates, to create microscale tubular origami. Interface engineering designs that involve hydrophilic and hydrophobic material stacks are introduced to realize the semidry release of nanomembranes, which finally self-roll into multifunctional tubular structures. Systematic experimental and theoretical studies demonstrate the controllability of their dimensions. Finally, a bioresorbable microtube with potential for transient implantable devices is demonstrated. Our present work adds to the portfolio of routes for the construction of tubular origami, which can be utilized as functional platforms for fundamental studies and practical applications.</description><subject>Actuators</subject><subject>Applied physics</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Controllability</subject><subject>Electronic implants</subject><subject>Microrobots</subject><subject>Substrates</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90EtLw0AUBeBBFKyPhf8g4Eoh9U7m0WYpxRcUXKjr4c5LUppMvZMI_fdGWnQhuLpc-DgHDmMXHKYctLhRU4BKQK0P2ITDbFYKzueHbAIAotS14sfsJOfV-KpKiAmTL6FtPG0LCuuAORQpFh12qQ2tJexCLmKioh_ssEYqEjXv2DZn7CjiOofz_T1lb_d3r4vHcvn88LS4XZZO1KIvLUZbWat9nDuYSStlFXiNXEuQ0vsoq7kOYJ3mVmrOAzqBPnqlrVAoXRCn7HKXu6H0MYTcm1UaqBsrTSWlqKUaI0d1tVOOUs4UotlQ0yJtDQfzPYpRZj_KaK93Nrumx75J3Q_-TPQLzcbH__Df5C9sxG-a</recordid><startdate>20200914</startdate><enddate>20200914</enddate><creator>Guo, Qinglei</creator><creator>Wei, Zhihuan</creator><creator>Xue, Zhongying</creator><creator>Jiang, Chengming</creator><creator>Zhao, Haonan</creator><creator>Zhang, Yifei</creator><creator>Wang, Gang</creator><creator>Chen, Da</creator><creator>Di, Zengfeng</creator><creator>Mei, Yongfeng</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6077-8525</orcidid><orcidid>https://orcid.org/0000-0002-6319-037X</orcidid><orcidid>https://orcid.org/0000-0003-2779-5774</orcidid><orcidid>https://orcid.org/0000-0002-9357-5107</orcidid></search><sort><creationdate>20200914</creationdate><title>Semidry release of nanomembranes for tubular origami</title><author>Guo, Qinglei ; Wei, Zhihuan ; Xue, Zhongying ; Jiang, Chengming ; Zhao, Haonan ; Zhang, Yifei ; Wang, Gang ; Chen, Da ; Di, Zengfeng ; Mei, Yongfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-bafb2bb6df8c074b442e19a164044ddf4286e0bc61b4611eac3adfd56b35a4ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actuators</topic><topic>Applied physics</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Controllability</topic><topic>Electronic implants</topic><topic>Microrobots</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Qinglei</creatorcontrib><creatorcontrib>Wei, Zhihuan</creatorcontrib><creatorcontrib>Xue, Zhongying</creatorcontrib><creatorcontrib>Jiang, Chengming</creatorcontrib><creatorcontrib>Zhao, Haonan</creatorcontrib><creatorcontrib>Zhang, Yifei</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Chen, Da</creatorcontrib><creatorcontrib>Di, Zengfeng</creatorcontrib><creatorcontrib>Mei, Yongfeng</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Qinglei</au><au>Wei, Zhihuan</au><au>Xue, Zhongying</au><au>Jiang, Chengming</au><au>Zhao, Haonan</au><au>Zhang, Yifei</au><au>Wang, Gang</au><au>Chen, Da</au><au>Di, Zengfeng</au><au>Mei, Yongfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semidry release of nanomembranes for tubular origami</atitle><jtitle>Applied physics letters</jtitle><date>2020-09-14</date><risdate>2020</risdate><volume>117</volume><issue>11</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Three-dimensional tubular origami, fabricated by the self-rolling of functional nanomembranes, is of great interest due to its numerous opportunities for applications in photochemical sensing, intelligent actuators, microrobots, electronics, and many others. A continuing opportunity of this area is in the development of strategies for fabricating tubular origami, in solvent-free and low-cost conditions. This paper proposed a semidry release approach, allowing for the sacrificial layer-free, vapor-assisted self-rolling, and recyclable use of substrates, to create microscale tubular origami. Interface engineering designs that involve hydrophilic and hydrophobic material stacks are introduced to realize the semidry release of nanomembranes, which finally self-roll into multifunctional tubular structures. Systematic experimental and theoretical studies demonstrate the controllability of their dimensions. Finally, a bioresorbable microtube with potential for transient implantable devices is demonstrated. Our present work adds to the portfolio of routes for the construction of tubular origami, which can be utilized as functional platforms for fundamental studies and practical applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0023096</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6077-8525</orcidid><orcidid>https://orcid.org/0000-0002-6319-037X</orcidid><orcidid>https://orcid.org/0000-0003-2779-5774</orcidid><orcidid>https://orcid.org/0000-0002-9357-5107</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2020-09, Vol.117 (11) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0023096 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Actuators Applied physics Biocompatibility Biomedical materials Controllability Electronic implants Microrobots Substrates |
title | Semidry release of nanomembranes for tubular origami |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T22%3A48%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semidry%20release%20of%20nanomembranes%20for%20tubular%20origami&rft.jtitle=Applied%20physics%20letters&rft.au=Guo,%20Qinglei&rft.date=2020-09-14&rft.volume=117&rft.issue=11&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0023096&rft_dat=%3Cproquest_scita%3E2443945442%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443945442&rft_id=info:pmid/&rfr_iscdi=true |