A non-linear turbulence model of supercritical fluid considering local non-equilibrium of Reynolds stress transport
For supercritical fluid turbulence, the traditional Reynolds-averaged Navier–Stokes models cannot yield satisfying predictions under the heat transfer deterioration condition due to the modifications of the buoyancy on turbulence. Direct numerical simulation results reveal that in the buoyancy flow,...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2020-09, Vol.32 (9) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 32 |
creator | Li, Fangbo Pei, Binbin Bai, Bofeng |
description | For supercritical fluid turbulence, the traditional Reynolds-averaged Navier–Stokes models cannot yield satisfying predictions under the heat transfer deterioration condition due to the modifications of the buoyancy on turbulence. Direct numerical simulation results reveal that in the buoyancy flow, the linear Reynolds stress constitutive equation in the eddy viscosity model (EVM) is invalidated, and the pressure fluctuation contributes to Reynolds stress transport. A new modeling approach for the EVM of supercritical flow is investigated in two aspects: (i) the analytical solution of the pressure strain term in the Reynolds stress transport equation is obtained by solving the Poisson equation of the pressure fluctuation of supercritical flow, and then, the models of the slow term and rapid term are proposed and (ii) a non-linear constitutive equation between the Reynolds stress and the mean strain rate is proposed. Combining these two points, the modified expressions for the eddy viscosity and turbulent Prandtl number are finally developed. We find that the accuracy of the prediction by the new model on supercritical fluid heat transfer and turbulence statistics in vertical flow and horizontal flow can be significantly improved. |
doi_str_mv | 10.1063/5.0020072 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0020072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2441367892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-f01b9d6e6b4cf80e91ce8b1bb568fdbaf4f176a571c0c3cf845d6f362ebe8a6d3</originalsourceid><addsrcrecordid>eNp90EtLxDAQB_AiCq6rB79BwJNC1yRt0_a4LL5gQRA9lzwmkiWbdPM47Le3ZffsaYbhNzPwL4p7glcEs-q5WWFMMW7pRbEguOvLljF2OfctLhmryHVxE-MOY1z1lC2KuEbOu9IaBzyglIPIFpwEtPcKLPIaxTxCkMEkI7lF2majkPQuGgXBuF9k_Tyfj8AhG2tEMHk_L37B0XmrIoopQIwoBe7i6EO6La40txHuznVZ_Ly-fG_ey-3n28dmvS0l7WkqNSaiVwyYqKXuMPREQieIEA3rtBJc15q0jDctkVhWE6kbxXTFKAjoOFPVsng43R2DP2SIadj5HNz0cqB1TSrWdj2d1ONJyeBjDKCHMZg9D8eB4GHOdGiGc6aTfTrZKE3iyXj3D_4Da7x5ag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441367892</pqid></control><display><type>article</type><title>A non-linear turbulence model of supercritical fluid considering local non-equilibrium of Reynolds stress transport</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Li, Fangbo ; Pei, Binbin ; Bai, Bofeng</creator><creatorcontrib>Li, Fangbo ; Pei, Binbin ; Bai, Bofeng</creatorcontrib><description>For supercritical fluid turbulence, the traditional Reynolds-averaged Navier–Stokes models cannot yield satisfying predictions under the heat transfer deterioration condition due to the modifications of the buoyancy on turbulence. Direct numerical simulation results reveal that in the buoyancy flow, the linear Reynolds stress constitutive equation in the eddy viscosity model (EVM) is invalidated, and the pressure fluctuation contributes to Reynolds stress transport. A new modeling approach for the EVM of supercritical flow is investigated in two aspects: (i) the analytical solution of the pressure strain term in the Reynolds stress transport equation is obtained by solving the Poisson equation of the pressure fluctuation of supercritical flow, and then, the models of the slow term and rapid term are proposed and (ii) a non-linear constitutive equation between the Reynolds stress and the mean strain rate is proposed. Combining these two points, the modified expressions for the eddy viscosity and turbulent Prandtl number are finally developed. We find that the accuracy of the prediction by the new model on supercritical fluid heat transfer and turbulence statistics in vertical flow and horizontal flow can be significantly improved.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0020072</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Buoyancy ; Computational fluid dynamics ; Computer simulation ; Constitutive equations ; Constitutive relationships ; Direct numerical simulation ; Eddy viscosity ; Exact solutions ; Fluid dynamics ; Fluid flow ; Heat transfer ; Physics ; Poisson equation ; Prandtl number ; Reynolds stress ; Strain rate ; Supercritical flow ; Supercritical fluids ; Transport equations ; Turbulence models ; Turbulent flow ; Viscosity ; Vortices</subject><ispartof>Physics of fluids (1994), 2020-09, Vol.32 (9)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-f01b9d6e6b4cf80e91ce8b1bb568fdbaf4f176a571c0c3cf845d6f362ebe8a6d3</citedby><cites>FETCH-LOGICAL-c292t-f01b9d6e6b4cf80e91ce8b1bb568fdbaf4f176a571c0c3cf845d6f362ebe8a6d3</cites><orcidid>0000-0002-6412-4390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Fangbo</creatorcontrib><creatorcontrib>Pei, Binbin</creatorcontrib><creatorcontrib>Bai, Bofeng</creatorcontrib><title>A non-linear turbulence model of supercritical fluid considering local non-equilibrium of Reynolds stress transport</title><title>Physics of fluids (1994)</title><description>For supercritical fluid turbulence, the traditional Reynolds-averaged Navier–Stokes models cannot yield satisfying predictions under the heat transfer deterioration condition due to the modifications of the buoyancy on turbulence. Direct numerical simulation results reveal that in the buoyancy flow, the linear Reynolds stress constitutive equation in the eddy viscosity model (EVM) is invalidated, and the pressure fluctuation contributes to Reynolds stress transport. A new modeling approach for the EVM of supercritical flow is investigated in two aspects: (i) the analytical solution of the pressure strain term in the Reynolds stress transport equation is obtained by solving the Poisson equation of the pressure fluctuation of supercritical flow, and then, the models of the slow term and rapid term are proposed and (ii) a non-linear constitutive equation between the Reynolds stress and the mean strain rate is proposed. Combining these two points, the modified expressions for the eddy viscosity and turbulent Prandtl number are finally developed. We find that the accuracy of the prediction by the new model on supercritical fluid heat transfer and turbulence statistics in vertical flow and horizontal flow can be significantly improved.</description><subject>Buoyancy</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Constitutive equations</subject><subject>Constitutive relationships</subject><subject>Direct numerical simulation</subject><subject>Eddy viscosity</subject><subject>Exact solutions</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Heat transfer</subject><subject>Physics</subject><subject>Poisson equation</subject><subject>Prandtl number</subject><subject>Reynolds stress</subject><subject>Strain rate</subject><subject>Supercritical flow</subject><subject>Supercritical fluids</subject><subject>Transport equations</subject><subject>Turbulence models</subject><subject>Turbulent flow</subject><subject>Viscosity</subject><subject>Vortices</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90EtLxDAQB_AiCq6rB79BwJNC1yRt0_a4LL5gQRA9lzwmkiWbdPM47Le3ZffsaYbhNzPwL4p7glcEs-q5WWFMMW7pRbEguOvLljF2OfctLhmryHVxE-MOY1z1lC2KuEbOu9IaBzyglIPIFpwEtPcKLPIaxTxCkMEkI7lF2majkPQuGgXBuF9k_Tyfj8AhG2tEMHk_L37B0XmrIoopQIwoBe7i6EO6La40txHuznVZ_Ly-fG_ey-3n28dmvS0l7WkqNSaiVwyYqKXuMPREQieIEA3rtBJc15q0jDctkVhWE6kbxXTFKAjoOFPVsng43R2DP2SIadj5HNz0cqB1TSrWdj2d1ONJyeBjDKCHMZg9D8eB4GHOdGiGc6aTfTrZKE3iyXj3D_4Da7x5ag</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Li, Fangbo</creator><creator>Pei, Binbin</creator><creator>Bai, Bofeng</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6412-4390</orcidid></search><sort><creationdate>20200901</creationdate><title>A non-linear turbulence model of supercritical fluid considering local non-equilibrium of Reynolds stress transport</title><author>Li, Fangbo ; Pei, Binbin ; Bai, Bofeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-f01b9d6e6b4cf80e91ce8b1bb568fdbaf4f176a571c0c3cf845d6f362ebe8a6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Buoyancy</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Constitutive equations</topic><topic>Constitutive relationships</topic><topic>Direct numerical simulation</topic><topic>Eddy viscosity</topic><topic>Exact solutions</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Heat transfer</topic><topic>Physics</topic><topic>Poisson equation</topic><topic>Prandtl number</topic><topic>Reynolds stress</topic><topic>Strain rate</topic><topic>Supercritical flow</topic><topic>Supercritical fluids</topic><topic>Transport equations</topic><topic>Turbulence models</topic><topic>Turbulent flow</topic><topic>Viscosity</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Fangbo</creatorcontrib><creatorcontrib>Pei, Binbin</creatorcontrib><creatorcontrib>Bai, Bofeng</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Fangbo</au><au>Pei, Binbin</au><au>Bai, Bofeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A non-linear turbulence model of supercritical fluid considering local non-equilibrium of Reynolds stress transport</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>32</volume><issue>9</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>For supercritical fluid turbulence, the traditional Reynolds-averaged Navier–Stokes models cannot yield satisfying predictions under the heat transfer deterioration condition due to the modifications of the buoyancy on turbulence. Direct numerical simulation results reveal that in the buoyancy flow, the linear Reynolds stress constitutive equation in the eddy viscosity model (EVM) is invalidated, and the pressure fluctuation contributes to Reynolds stress transport. A new modeling approach for the EVM of supercritical flow is investigated in two aspects: (i) the analytical solution of the pressure strain term in the Reynolds stress transport equation is obtained by solving the Poisson equation of the pressure fluctuation of supercritical flow, and then, the models of the slow term and rapid term are proposed and (ii) a non-linear constitutive equation between the Reynolds stress and the mean strain rate is proposed. Combining these two points, the modified expressions for the eddy viscosity and turbulent Prandtl number are finally developed. We find that the accuracy of the prediction by the new model on supercritical fluid heat transfer and turbulence statistics in vertical flow and horizontal flow can be significantly improved.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0020072</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6412-4390</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2020-09, Vol.32 (9) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0020072 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Buoyancy Computational fluid dynamics Computer simulation Constitutive equations Constitutive relationships Direct numerical simulation Eddy viscosity Exact solutions Fluid dynamics Fluid flow Heat transfer Physics Poisson equation Prandtl number Reynolds stress Strain rate Supercritical flow Supercritical fluids Transport equations Turbulence models Turbulent flow Viscosity Vortices |
title | A non-linear turbulence model of supercritical fluid considering local non-equilibrium of Reynolds stress transport |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T13%3A52%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20non-linear%20turbulence%20model%20of%20supercritical%20fluid%20considering%20local%20non-equilibrium%20of%20Reynolds%20stress%20transport&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Li,%20Fangbo&rft.date=2020-09-01&rft.volume=32&rft.issue=9&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0020072&rft_dat=%3Cproquest_scita%3E2441367892%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441367892&rft_id=info:pmid/&rfr_iscdi=true |