A non-linear turbulence model of supercritical fluid considering local non-equilibrium of Reynolds stress transport

For supercritical fluid turbulence, the traditional Reynolds-averaged Navier–Stokes models cannot yield satisfying predictions under the heat transfer deterioration condition due to the modifications of the buoyancy on turbulence. Direct numerical simulation results reveal that in the buoyancy flow,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2020-09, Vol.32 (9)
Hauptverfasser: Li, Fangbo, Pei, Binbin, Bai, Bofeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Physics of fluids (1994)
container_volume 32
creator Li, Fangbo
Pei, Binbin
Bai, Bofeng
description For supercritical fluid turbulence, the traditional Reynolds-averaged Navier–Stokes models cannot yield satisfying predictions under the heat transfer deterioration condition due to the modifications of the buoyancy on turbulence. Direct numerical simulation results reveal that in the buoyancy flow, the linear Reynolds stress constitutive equation in the eddy viscosity model (EVM) is invalidated, and the pressure fluctuation contributes to Reynolds stress transport. A new modeling approach for the EVM of supercritical flow is investigated in two aspects: (i) the analytical solution of the pressure strain term in the Reynolds stress transport equation is obtained by solving the Poisson equation of the pressure fluctuation of supercritical flow, and then, the models of the slow term and rapid term are proposed and (ii) a non-linear constitutive equation between the Reynolds stress and the mean strain rate is proposed. Combining these two points, the modified expressions for the eddy viscosity and turbulent Prandtl number are finally developed. We find that the accuracy of the prediction by the new model on supercritical fluid heat transfer and turbulence statistics in vertical flow and horizontal flow can be significantly improved.
doi_str_mv 10.1063/5.0020072
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0020072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2441367892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-f01b9d6e6b4cf80e91ce8b1bb568fdbaf4f176a571c0c3cf845d6f362ebe8a6d3</originalsourceid><addsrcrecordid>eNp90EtLxDAQB_AiCq6rB79BwJNC1yRt0_a4LL5gQRA9lzwmkiWbdPM47Le3ZffsaYbhNzPwL4p7glcEs-q5WWFMMW7pRbEguOvLljF2OfctLhmryHVxE-MOY1z1lC2KuEbOu9IaBzyglIPIFpwEtPcKLPIaxTxCkMEkI7lF2majkPQuGgXBuF9k_Tyfj8AhG2tEMHk_L37B0XmrIoopQIwoBe7i6EO6La40txHuznVZ_Ly-fG_ey-3n28dmvS0l7WkqNSaiVwyYqKXuMPREQieIEA3rtBJc15q0jDctkVhWE6kbxXTFKAjoOFPVsng43R2DP2SIadj5HNz0cqB1TSrWdj2d1ONJyeBjDKCHMZg9D8eB4GHOdGiGc6aTfTrZKE3iyXj3D_4Da7x5ag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441367892</pqid></control><display><type>article</type><title>A non-linear turbulence model of supercritical fluid considering local non-equilibrium of Reynolds stress transport</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Li, Fangbo ; Pei, Binbin ; Bai, Bofeng</creator><creatorcontrib>Li, Fangbo ; Pei, Binbin ; Bai, Bofeng</creatorcontrib><description>For supercritical fluid turbulence, the traditional Reynolds-averaged Navier–Stokes models cannot yield satisfying predictions under the heat transfer deterioration condition due to the modifications of the buoyancy on turbulence. Direct numerical simulation results reveal that in the buoyancy flow, the linear Reynolds stress constitutive equation in the eddy viscosity model (EVM) is invalidated, and the pressure fluctuation contributes to Reynolds stress transport. A new modeling approach for the EVM of supercritical flow is investigated in two aspects: (i) the analytical solution of the pressure strain term in the Reynolds stress transport equation is obtained by solving the Poisson equation of the pressure fluctuation of supercritical flow, and then, the models of the slow term and rapid term are proposed and (ii) a non-linear constitutive equation between the Reynolds stress and the mean strain rate is proposed. Combining these two points, the modified expressions for the eddy viscosity and turbulent Prandtl number are finally developed. We find that the accuracy of the prediction by the new model on supercritical fluid heat transfer and turbulence statistics in vertical flow and horizontal flow can be significantly improved.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0020072</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Buoyancy ; Computational fluid dynamics ; Computer simulation ; Constitutive equations ; Constitutive relationships ; Direct numerical simulation ; Eddy viscosity ; Exact solutions ; Fluid dynamics ; Fluid flow ; Heat transfer ; Physics ; Poisson equation ; Prandtl number ; Reynolds stress ; Strain rate ; Supercritical flow ; Supercritical fluids ; Transport equations ; Turbulence models ; Turbulent flow ; Viscosity ; Vortices</subject><ispartof>Physics of fluids (1994), 2020-09, Vol.32 (9)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-f01b9d6e6b4cf80e91ce8b1bb568fdbaf4f176a571c0c3cf845d6f362ebe8a6d3</citedby><cites>FETCH-LOGICAL-c292t-f01b9d6e6b4cf80e91ce8b1bb568fdbaf4f176a571c0c3cf845d6f362ebe8a6d3</cites><orcidid>0000-0002-6412-4390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Fangbo</creatorcontrib><creatorcontrib>Pei, Binbin</creatorcontrib><creatorcontrib>Bai, Bofeng</creatorcontrib><title>A non-linear turbulence model of supercritical fluid considering local non-equilibrium of Reynolds stress transport</title><title>Physics of fluids (1994)</title><description>For supercritical fluid turbulence, the traditional Reynolds-averaged Navier–Stokes models cannot yield satisfying predictions under the heat transfer deterioration condition due to the modifications of the buoyancy on turbulence. Direct numerical simulation results reveal that in the buoyancy flow, the linear Reynolds stress constitutive equation in the eddy viscosity model (EVM) is invalidated, and the pressure fluctuation contributes to Reynolds stress transport. A new modeling approach for the EVM of supercritical flow is investigated in two aspects: (i) the analytical solution of the pressure strain term in the Reynolds stress transport equation is obtained by solving the Poisson equation of the pressure fluctuation of supercritical flow, and then, the models of the slow term and rapid term are proposed and (ii) a non-linear constitutive equation between the Reynolds stress and the mean strain rate is proposed. Combining these two points, the modified expressions for the eddy viscosity and turbulent Prandtl number are finally developed. We find that the accuracy of the prediction by the new model on supercritical fluid heat transfer and turbulence statistics in vertical flow and horizontal flow can be significantly improved.</description><subject>Buoyancy</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Constitutive equations</subject><subject>Constitutive relationships</subject><subject>Direct numerical simulation</subject><subject>Eddy viscosity</subject><subject>Exact solutions</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Heat transfer</subject><subject>Physics</subject><subject>Poisson equation</subject><subject>Prandtl number</subject><subject>Reynolds stress</subject><subject>Strain rate</subject><subject>Supercritical flow</subject><subject>Supercritical fluids</subject><subject>Transport equations</subject><subject>Turbulence models</subject><subject>Turbulent flow</subject><subject>Viscosity</subject><subject>Vortices</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90EtLxDAQB_AiCq6rB79BwJNC1yRt0_a4LL5gQRA9lzwmkiWbdPM47Le3ZffsaYbhNzPwL4p7glcEs-q5WWFMMW7pRbEguOvLljF2OfctLhmryHVxE-MOY1z1lC2KuEbOu9IaBzyglIPIFpwEtPcKLPIaxTxCkMEkI7lF2majkPQuGgXBuF9k_Tyfj8AhG2tEMHk_L37B0XmrIoopQIwoBe7i6EO6La40txHuznVZ_Ly-fG_ey-3n28dmvS0l7WkqNSaiVwyYqKXuMPREQieIEA3rtBJc15q0jDctkVhWE6kbxXTFKAjoOFPVsng43R2DP2SIadj5HNz0cqB1TSrWdj2d1ONJyeBjDKCHMZg9D8eB4GHOdGiGc6aTfTrZKE3iyXj3D_4Da7x5ag</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Li, Fangbo</creator><creator>Pei, Binbin</creator><creator>Bai, Bofeng</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6412-4390</orcidid></search><sort><creationdate>20200901</creationdate><title>A non-linear turbulence model of supercritical fluid considering local non-equilibrium of Reynolds stress transport</title><author>Li, Fangbo ; Pei, Binbin ; Bai, Bofeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-f01b9d6e6b4cf80e91ce8b1bb568fdbaf4f176a571c0c3cf845d6f362ebe8a6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Buoyancy</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Constitutive equations</topic><topic>Constitutive relationships</topic><topic>Direct numerical simulation</topic><topic>Eddy viscosity</topic><topic>Exact solutions</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Heat transfer</topic><topic>Physics</topic><topic>Poisson equation</topic><topic>Prandtl number</topic><topic>Reynolds stress</topic><topic>Strain rate</topic><topic>Supercritical flow</topic><topic>Supercritical fluids</topic><topic>Transport equations</topic><topic>Turbulence models</topic><topic>Turbulent flow</topic><topic>Viscosity</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Fangbo</creatorcontrib><creatorcontrib>Pei, Binbin</creatorcontrib><creatorcontrib>Bai, Bofeng</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Fangbo</au><au>Pei, Binbin</au><au>Bai, Bofeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A non-linear turbulence model of supercritical fluid considering local non-equilibrium of Reynolds stress transport</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>32</volume><issue>9</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>For supercritical fluid turbulence, the traditional Reynolds-averaged Navier–Stokes models cannot yield satisfying predictions under the heat transfer deterioration condition due to the modifications of the buoyancy on turbulence. Direct numerical simulation results reveal that in the buoyancy flow, the linear Reynolds stress constitutive equation in the eddy viscosity model (EVM) is invalidated, and the pressure fluctuation contributes to Reynolds stress transport. A new modeling approach for the EVM of supercritical flow is investigated in two aspects: (i) the analytical solution of the pressure strain term in the Reynolds stress transport equation is obtained by solving the Poisson equation of the pressure fluctuation of supercritical flow, and then, the models of the slow term and rapid term are proposed and (ii) a non-linear constitutive equation between the Reynolds stress and the mean strain rate is proposed. Combining these two points, the modified expressions for the eddy viscosity and turbulent Prandtl number are finally developed. We find that the accuracy of the prediction by the new model on supercritical fluid heat transfer and turbulence statistics in vertical flow and horizontal flow can be significantly improved.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0020072</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6412-4390</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2020-09, Vol.32 (9)
issn 1070-6631
1089-7666
language eng
recordid cdi_scitation_primary_10_1063_5_0020072
source AIP Journals Complete; Alma/SFX Local Collection
subjects Buoyancy
Computational fluid dynamics
Computer simulation
Constitutive equations
Constitutive relationships
Direct numerical simulation
Eddy viscosity
Exact solutions
Fluid dynamics
Fluid flow
Heat transfer
Physics
Poisson equation
Prandtl number
Reynolds stress
Strain rate
Supercritical flow
Supercritical fluids
Transport equations
Turbulence models
Turbulent flow
Viscosity
Vortices
title A non-linear turbulence model of supercritical fluid considering local non-equilibrium of Reynolds stress transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T13%3A52%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20non-linear%20turbulence%20model%20of%20supercritical%20fluid%20considering%20local%20non-equilibrium%20of%20Reynolds%20stress%20transport&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Li,%20Fangbo&rft.date=2020-09-01&rft.volume=32&rft.issue=9&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0020072&rft_dat=%3Cproquest_scita%3E2441367892%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441367892&rft_id=info:pmid/&rfr_iscdi=true