Stratification and filamentation instabilities in the dense core of exploding wires

We report experiments characterizing the stratified and filamentary structures formed in the dense core of nanosecond electrical explosion of aluminum wires to understand the physical scenario of electrothermal instability. Direct experimental observations for stratification and filamentation instab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2020-11, Vol.27 (11), Article 112102
Hauptverfasser: Wang, Kun, Shi, Zongqian, Xu, Hongfei, Zhao, Jiancai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Physics of plasmas
container_volume 27
creator Wang, Kun
Shi, Zongqian
Xu, Hongfei
Zhao, Jiancai
description We report experiments characterizing the stratified and filamentary structures formed in the dense core of nanosecond electrical explosion of aluminum wires to understand the physical scenario of electrothermal instability. Direct experimental observations for stratification and filamentation instabilities, as well as the coexistence state of azimuthal strata and vertical filament in the dense plasma column, are presented. The wire core exhibits remarkable different patterns of instability with the decreasing wire length. The shadowgram of shorter wires demonstrates that the instability is transformed from stratified structures to filamentary structures. According to a radial magnetohydrodynamic computation, the wire enters a phase state of negative temperature dependence of resistivity before voltage breakdown. However, filamentary structures are only observed in exploding wires of 1 cm and 0.5 cm in length. The analyses based on experimental and computational results indicate that the increase in internal energy determines the manifestation of instability in the dense core. Filamentation instability occurs when the total energy input is no less than 1.5 times the vaporization energy at the moment of voltage breakdown. The lower limit of energy deposition ensures that the increase in internal energy covers vaporization energy.
doi_str_mv 10.1063/5.0018965
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0018965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2456576859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-815d12b956d24ae360211d8c42b8463c43c5e99b026e8cabeec6ea0f5073c82e3</originalsourceid><addsrcrecordid>eNqNkF9LwzAUxYsoOKcPfoOCTyqdSdqk6aMU_8HAhyn4VtL0RjO6ZCaZ029vRsd8EMSX5ObwO_fenCQ5xWiCEcuv6AQhzCtG95IRRrzKSlYW-5u6RBljxcthcuT9HCFUMMpHyWwWnAhaaRlPa1JhulTpXizAhEHRxgfR6l4HDT6-0vAGaQfGQyqtg9SqFD6Xve20eU3X2oE_Tg6U6D2cbO9x8nx781TfZ9PHu4f6eprJnJQh45h2mLQVZR0pBOQMEYw7LgvS8oLlssglhapqEWHApWgBJAOBFEVlLjmBfJycDX2Xzr6vwIdmblfOxJENKSijJeO0itT5QElnvXegmqXTC-G-GoyaTWYNbbaZRfZyYNfQWuWlBiNhx8fQKI-rcRIrRCLN_0_XesiztisTovVisEbXoO98H9b9bNQsO_UX_PsL3yk3m40</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456576859</pqid></control><display><type>article</type><title>Stratification and filamentation instabilities in the dense core of exploding wires</title><source>AIP Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Wang, Kun ; Shi, Zongqian ; Xu, Hongfei ; Zhao, Jiancai</creator><creatorcontrib>Wang, Kun ; Shi, Zongqian ; Xu, Hongfei ; Zhao, Jiancai</creatorcontrib><description>We report experiments characterizing the stratified and filamentary structures formed in the dense core of nanosecond electrical explosion of aluminum wires to understand the physical scenario of electrothermal instability. Direct experimental observations for stratification and filamentation instabilities, as well as the coexistence state of azimuthal strata and vertical filament in the dense plasma column, are presented. The wire core exhibits remarkable different patterns of instability with the decreasing wire length. The shadowgram of shorter wires demonstrates that the instability is transformed from stratified structures to filamentary structures. According to a radial magnetohydrodynamic computation, the wire enters a phase state of negative temperature dependence of resistivity before voltage breakdown. However, filamentary structures are only observed in exploding wires of 1 cm and 0.5 cm in length. The analyses based on experimental and computational results indicate that the increase in internal energy determines the manifestation of instability in the dense core. Filamentation instability occurs when the total energy input is no less than 1.5 times the vaporization energy at the moment of voltage breakdown. The lower limit of energy deposition ensures that the increase in internal energy covers vaporization energy.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0018965</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>MELVILLE: AIP Publishing</publisher><subject>Aluminum ; Breakdown ; Computational fluid dynamics ; Core wire ; Dense plasmas ; Electric potential ; Energy ; Exploding wires ; Fluid flow ; Internal energy ; Magnetohydrodynamics ; Physical Sciences ; Physics ; Physics, Fluids &amp; Plasmas ; Plasma physics ; Science &amp; Technology ; Stratification ; Temperature dependence ; Vaporization ; Voltage ; Wire</subject><ispartof>Physics of plasmas, 2020-11, Vol.27 (11), Article 112102</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>10</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000588468200002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c327t-815d12b956d24ae360211d8c42b8463c43c5e99b026e8cabeec6ea0f5073c82e3</citedby><cites>FETCH-LOGICAL-c327t-815d12b956d24ae360211d8c42b8463c43c5e99b026e8cabeec6ea0f5073c82e3</cites><orcidid>0000-0003-3347-2058 ; 0000-0001-9095-7401</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0018965$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,4513,27928,27929,28252,76388</link.rule.ids></links><search><creatorcontrib>Wang, Kun</creatorcontrib><creatorcontrib>Shi, Zongqian</creatorcontrib><creatorcontrib>Xu, Hongfei</creatorcontrib><creatorcontrib>Zhao, Jiancai</creatorcontrib><title>Stratification and filamentation instabilities in the dense core of exploding wires</title><title>Physics of plasmas</title><addtitle>PHYS PLASMAS</addtitle><description>We report experiments characterizing the stratified and filamentary structures formed in the dense core of nanosecond electrical explosion of aluminum wires to understand the physical scenario of electrothermal instability. Direct experimental observations for stratification and filamentation instabilities, as well as the coexistence state of azimuthal strata and vertical filament in the dense plasma column, are presented. The wire core exhibits remarkable different patterns of instability with the decreasing wire length. The shadowgram of shorter wires demonstrates that the instability is transformed from stratified structures to filamentary structures. According to a radial magnetohydrodynamic computation, the wire enters a phase state of negative temperature dependence of resistivity before voltage breakdown. However, filamentary structures are only observed in exploding wires of 1 cm and 0.5 cm in length. The analyses based on experimental and computational results indicate that the increase in internal energy determines the manifestation of instability in the dense core. Filamentation instability occurs when the total energy input is no less than 1.5 times the vaporization energy at the moment of voltage breakdown. The lower limit of energy deposition ensures that the increase in internal energy covers vaporization energy.</description><subject>Aluminum</subject><subject>Breakdown</subject><subject>Computational fluid dynamics</subject><subject>Core wire</subject><subject>Dense plasmas</subject><subject>Electric potential</subject><subject>Energy</subject><subject>Exploding wires</subject><subject>Fluid flow</subject><subject>Internal energy</subject><subject>Magnetohydrodynamics</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Fluids &amp; Plasmas</subject><subject>Plasma physics</subject><subject>Science &amp; Technology</subject><subject>Stratification</subject><subject>Temperature dependence</subject><subject>Vaporization</subject><subject>Voltage</subject><subject>Wire</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkF9LwzAUxYsoOKcPfoOCTyqdSdqk6aMU_8HAhyn4VtL0RjO6ZCaZ029vRsd8EMSX5ObwO_fenCQ5xWiCEcuv6AQhzCtG95IRRrzKSlYW-5u6RBljxcthcuT9HCFUMMpHyWwWnAhaaRlPa1JhulTpXizAhEHRxgfR6l4HDT6-0vAGaQfGQyqtg9SqFD6Xve20eU3X2oE_Tg6U6D2cbO9x8nx781TfZ9PHu4f6eprJnJQh45h2mLQVZR0pBOQMEYw7LgvS8oLlssglhapqEWHApWgBJAOBFEVlLjmBfJycDX2Xzr6vwIdmblfOxJENKSijJeO0itT5QElnvXegmqXTC-G-GoyaTWYNbbaZRfZyYNfQWuWlBiNhx8fQKI-rcRIrRCLN_0_XesiztisTovVisEbXoO98H9b9bNQsO_UX_PsL3yk3m40</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Wang, Kun</creator><creator>Shi, Zongqian</creator><creator>Xu, Hongfei</creator><creator>Zhao, Jiancai</creator><general>AIP Publishing</general><general>American Institute of Physics</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3347-2058</orcidid><orcidid>https://orcid.org/0000-0001-9095-7401</orcidid></search><sort><creationdate>202011</creationdate><title>Stratification and filamentation instabilities in the dense core of exploding wires</title><author>Wang, Kun ; Shi, Zongqian ; Xu, Hongfei ; Zhao, Jiancai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-815d12b956d24ae360211d8c42b8463c43c5e99b026e8cabeec6ea0f5073c82e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum</topic><topic>Breakdown</topic><topic>Computational fluid dynamics</topic><topic>Core wire</topic><topic>Dense plasmas</topic><topic>Electric potential</topic><topic>Energy</topic><topic>Exploding wires</topic><topic>Fluid flow</topic><topic>Internal energy</topic><topic>Magnetohydrodynamics</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Fluids &amp; Plasmas</topic><topic>Plasma physics</topic><topic>Science &amp; Technology</topic><topic>Stratification</topic><topic>Temperature dependence</topic><topic>Vaporization</topic><topic>Voltage</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kun</creatorcontrib><creatorcontrib>Shi, Zongqian</creatorcontrib><creatorcontrib>Xu, Hongfei</creatorcontrib><creatorcontrib>Zhao, Jiancai</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kun</au><au>Shi, Zongqian</au><au>Xu, Hongfei</au><au>Zhao, Jiancai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stratification and filamentation instabilities in the dense core of exploding wires</atitle><jtitle>Physics of plasmas</jtitle><stitle>PHYS PLASMAS</stitle><date>2020-11</date><risdate>2020</risdate><volume>27</volume><issue>11</issue><artnum>112102</artnum><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>We report experiments characterizing the stratified and filamentary structures formed in the dense core of nanosecond electrical explosion of aluminum wires to understand the physical scenario of electrothermal instability. Direct experimental observations for stratification and filamentation instabilities, as well as the coexistence state of azimuthal strata and vertical filament in the dense plasma column, are presented. The wire core exhibits remarkable different patterns of instability with the decreasing wire length. The shadowgram of shorter wires demonstrates that the instability is transformed from stratified structures to filamentary structures. According to a radial magnetohydrodynamic computation, the wire enters a phase state of negative temperature dependence of resistivity before voltage breakdown. However, filamentary structures are only observed in exploding wires of 1 cm and 0.5 cm in length. The analyses based on experimental and computational results indicate that the increase in internal energy determines the manifestation of instability in the dense core. Filamentation instability occurs when the total energy input is no less than 1.5 times the vaporization energy at the moment of voltage breakdown. The lower limit of energy deposition ensures that the increase in internal energy covers vaporization energy.</abstract><cop>MELVILLE</cop><pub>AIP Publishing</pub><doi>10.1063/5.0018965</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3347-2058</orcidid><orcidid>https://orcid.org/0000-0001-9095-7401</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2020-11, Vol.27 (11), Article 112102
issn 1070-664X
1089-7674
language eng
recordid cdi_scitation_primary_10_1063_5_0018965
source AIP Journals Complete; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects Aluminum
Breakdown
Computational fluid dynamics
Core wire
Dense plasmas
Electric potential
Energy
Exploding wires
Fluid flow
Internal energy
Magnetohydrodynamics
Physical Sciences
Physics
Physics, Fluids & Plasmas
Plasma physics
Science & Technology
Stratification
Temperature dependence
Vaporization
Voltage
Wire
title Stratification and filamentation instabilities in the dense core of exploding wires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T17%3A12%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stratification%20and%20filamentation%20instabilities%20in%20the%20dense%20core%20of%20exploding%20wires&rft.jtitle=Physics%20of%20plasmas&rft.au=Wang,%20Kun&rft.date=2020-11&rft.volume=27&rft.issue=11&rft.artnum=112102&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0018965&rft_dat=%3Cproquest_scita%3E2456576859%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2456576859&rft_id=info:pmid/&rfr_iscdi=true