Controlled giant magnetoresistance and spin–valley transport in an asymmetrical MoS2 tunnel junction
We study the effects of asymmetrical magnetization and an optoelectronic tunable band structure on the transmission of particles in a MoS2 tunnel junction. Based on the results, we propose a model for a multifunctional coupler as a single system incorporating giant magnetoresistance, a spin–valley f...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2020-09, Vol.117 (10) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 117 |
creator | Qiu, Xue-Jun Cao, Zhen-Zhou Hou, Jin Yang, Chun-Yong |
description | We study the effects of asymmetrical magnetization and an optoelectronic tunable band structure on the transmission of particles in a MoS2 tunnel junction. Based on the results, we propose a model for a multifunctional coupler as a single system incorporating giant magnetoresistance, a spin–valley filter, and a spin–valley valve. The device is made up of ferromagnetic/ferromagnetic/normal junctions, with an off-resonant light and an electric gate potential functioning as the spin–valley filter and spin–valley valve, respectively. Increasing the asymmetrical magnetization is found to substantially enhance the tunneling magnetoresistance (TMR) of the system, leading to giant TMR. The spin–valley filtering is based on the spin imbalance modulation that arises from asymmetrical magnetization and the valley degeneracy breaking of off-resonant light, and the spin–valley valve is produced by altering the effective density of states of spin/valley polarized bands via the gate potential that controls the flow of spin/valley polarized particles. By fixing the magnetization configurations, one specific spin–valley filter and spin–valley valve can be acquired by tuning an external parameter to the corresponding spin/valley polarized energy windows. |
doi_str_mv | 10.1063/5.0018869 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0018869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2441367785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-858f08174fd1f5d9767feeaaca29f2c7c23441cd50954a2bf499910827239c4c3</originalsourceid><addsrcrecordid>eNp90M1KAzEQAOAgCtbqwTcIeFLYmp_NZnOU4h9UPKjnELNJSdlN1iQr9OY7-IY-iVta9CB4Gob5ZoYZAE4xmmFU0Us2QwjXdSX2wAQjzguKcb0PJgghWlSC4UNwlNJqTBmhdALsPPgcQ9uaBi6d8hl2aulNDtEkl7Ly2kDlG5h6578-Pt_VKNcwR-VTH2KGzo9lqNK660yOTqsWPoQnAvPgvWnhavA6u-CPwYFVbTInuzgFLzfXz_O7YvF4ez-_WhSaEpqLmtUW1ZiXtsGWNYJX3BqjlFZEWKK5JrQssW4YEqxU5NWWQgiMasIJFbrUdArOtnP7GN4Gk7JchSH6caUkYyetOK_ZqM63SseQUjRW9tF1Kq4lRnLzRsnk7o2jvdjapF1Wm1t-8HuIv1D2jf0P_538DXg5gr8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441367785</pqid></control><display><type>article</type><title>Controlled giant magnetoresistance and spin–valley transport in an asymmetrical MoS2 tunnel junction</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Qiu, Xue-Jun ; Cao, Zhen-Zhou ; Hou, Jin ; Yang, Chun-Yong</creator><creatorcontrib>Qiu, Xue-Jun ; Cao, Zhen-Zhou ; Hou, Jin ; Yang, Chun-Yong</creatorcontrib><description>We study the effects of asymmetrical magnetization and an optoelectronic tunable band structure on the transmission of particles in a MoS2 tunnel junction. Based on the results, we propose a model for a multifunctional coupler as a single system incorporating giant magnetoresistance, a spin–valley filter, and a spin–valley valve. The device is made up of ferromagnetic/ferromagnetic/normal junctions, with an off-resonant light and an electric gate potential functioning as the spin–valley filter and spin–valley valve, respectively. Increasing the asymmetrical magnetization is found to substantially enhance the tunneling magnetoresistance (TMR) of the system, leading to giant TMR. The spin–valley filtering is based on the spin imbalance modulation that arises from asymmetrical magnetization and the valley degeneracy breaking of off-resonant light, and the spin–valley valve is produced by altering the effective density of states of spin/valley polarized bands via the gate potential that controls the flow of spin/valley polarized particles. By fixing the magnetization configurations, one specific spin–valley filter and spin–valley valve can be acquired by tuning an external parameter to the corresponding spin/valley polarized energy windows.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0018869</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Asymmetry ; Electrical junctions ; Ferromagnetism ; Giant magnetoresistance ; Magnetism ; Magnetization ; Magnetoresistivity ; Molybdenum disulfide ; Optoelectronics ; Particle spin ; Tunnel junctions ; Valleys</subject><ispartof>Applied physics letters, 2020-09, Vol.117 (10)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-858f08174fd1f5d9767feeaaca29f2c7c23441cd50954a2bf499910827239c4c3</citedby><cites>FETCH-LOGICAL-c323t-858f08174fd1f5d9767feeaaca29f2c7c23441cd50954a2bf499910827239c4c3</cites><orcidid>0000-0002-9948-7343 ; 0000-0001-7055-5341 ; 0000-0002-5026-1247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0018869$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4509,27922,27923,76154</link.rule.ids></links><search><creatorcontrib>Qiu, Xue-Jun</creatorcontrib><creatorcontrib>Cao, Zhen-Zhou</creatorcontrib><creatorcontrib>Hou, Jin</creatorcontrib><creatorcontrib>Yang, Chun-Yong</creatorcontrib><title>Controlled giant magnetoresistance and spin–valley transport in an asymmetrical MoS2 tunnel junction</title><title>Applied physics letters</title><description>We study the effects of asymmetrical magnetization and an optoelectronic tunable band structure on the transmission of particles in a MoS2 tunnel junction. Based on the results, we propose a model for a multifunctional coupler as a single system incorporating giant magnetoresistance, a spin–valley filter, and a spin–valley valve. The device is made up of ferromagnetic/ferromagnetic/normal junctions, with an off-resonant light and an electric gate potential functioning as the spin–valley filter and spin–valley valve, respectively. Increasing the asymmetrical magnetization is found to substantially enhance the tunneling magnetoresistance (TMR) of the system, leading to giant TMR. The spin–valley filtering is based on the spin imbalance modulation that arises from asymmetrical magnetization and the valley degeneracy breaking of off-resonant light, and the spin–valley valve is produced by altering the effective density of states of spin/valley polarized bands via the gate potential that controls the flow of spin/valley polarized particles. By fixing the magnetization configurations, one specific spin–valley filter and spin–valley valve can be acquired by tuning an external parameter to the corresponding spin/valley polarized energy windows.</description><subject>Applied physics</subject><subject>Asymmetry</subject><subject>Electrical junctions</subject><subject>Ferromagnetism</subject><subject>Giant magnetoresistance</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Magnetoresistivity</subject><subject>Molybdenum disulfide</subject><subject>Optoelectronics</subject><subject>Particle spin</subject><subject>Tunnel junctions</subject><subject>Valleys</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEQAOAgCtbqwTcIeFLYmp_NZnOU4h9UPKjnELNJSdlN1iQr9OY7-IY-iVta9CB4Gob5ZoYZAE4xmmFU0Us2QwjXdSX2wAQjzguKcb0PJgghWlSC4UNwlNJqTBmhdALsPPgcQ9uaBi6d8hl2aulNDtEkl7Ly2kDlG5h6578-Pt_VKNcwR-VTH2KGzo9lqNK660yOTqsWPoQnAvPgvWnhavA6u-CPwYFVbTInuzgFLzfXz_O7YvF4ez-_WhSaEpqLmtUW1ZiXtsGWNYJX3BqjlFZEWKK5JrQssW4YEqxU5NWWQgiMasIJFbrUdArOtnP7GN4Gk7JchSH6caUkYyetOK_ZqM63SseQUjRW9tF1Kq4lRnLzRsnk7o2jvdjapF1Wm1t-8HuIv1D2jf0P_538DXg5gr8</recordid><startdate>20200908</startdate><enddate>20200908</enddate><creator>Qiu, Xue-Jun</creator><creator>Cao, Zhen-Zhou</creator><creator>Hou, Jin</creator><creator>Yang, Chun-Yong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9948-7343</orcidid><orcidid>https://orcid.org/0000-0001-7055-5341</orcidid><orcidid>https://orcid.org/0000-0002-5026-1247</orcidid></search><sort><creationdate>20200908</creationdate><title>Controlled giant magnetoresistance and spin–valley transport in an asymmetrical MoS2 tunnel junction</title><author>Qiu, Xue-Jun ; Cao, Zhen-Zhou ; Hou, Jin ; Yang, Chun-Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-858f08174fd1f5d9767feeaaca29f2c7c23441cd50954a2bf499910827239c4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Asymmetry</topic><topic>Electrical junctions</topic><topic>Ferromagnetism</topic><topic>Giant magnetoresistance</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Magnetoresistivity</topic><topic>Molybdenum disulfide</topic><topic>Optoelectronics</topic><topic>Particle spin</topic><topic>Tunnel junctions</topic><topic>Valleys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Xue-Jun</creatorcontrib><creatorcontrib>Cao, Zhen-Zhou</creatorcontrib><creatorcontrib>Hou, Jin</creatorcontrib><creatorcontrib>Yang, Chun-Yong</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Xue-Jun</au><au>Cao, Zhen-Zhou</au><au>Hou, Jin</au><au>Yang, Chun-Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled giant magnetoresistance and spin–valley transport in an asymmetrical MoS2 tunnel junction</atitle><jtitle>Applied physics letters</jtitle><date>2020-09-08</date><risdate>2020</risdate><volume>117</volume><issue>10</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We study the effects of asymmetrical magnetization and an optoelectronic tunable band structure on the transmission of particles in a MoS2 tunnel junction. Based on the results, we propose a model for a multifunctional coupler as a single system incorporating giant magnetoresistance, a spin–valley filter, and a spin–valley valve. The device is made up of ferromagnetic/ferromagnetic/normal junctions, with an off-resonant light and an electric gate potential functioning as the spin–valley filter and spin–valley valve, respectively. Increasing the asymmetrical magnetization is found to substantially enhance the tunneling magnetoresistance (TMR) of the system, leading to giant TMR. The spin–valley filtering is based on the spin imbalance modulation that arises from asymmetrical magnetization and the valley degeneracy breaking of off-resonant light, and the spin–valley valve is produced by altering the effective density of states of spin/valley polarized bands via the gate potential that controls the flow of spin/valley polarized particles. By fixing the magnetization configurations, one specific spin–valley filter and spin–valley valve can be acquired by tuning an external parameter to the corresponding spin/valley polarized energy windows.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0018869</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9948-7343</orcidid><orcidid>https://orcid.org/0000-0001-7055-5341</orcidid><orcidid>https://orcid.org/0000-0002-5026-1247</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2020-09, Vol.117 (10) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0018869 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Asymmetry Electrical junctions Ferromagnetism Giant magnetoresistance Magnetism Magnetization Magnetoresistivity Molybdenum disulfide Optoelectronics Particle spin Tunnel junctions Valleys |
title | Controlled giant magnetoresistance and spin–valley transport in an asymmetrical MoS2 tunnel junction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A12%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20giant%20magnetoresistance%20and%20spin%E2%80%93valley%20transport%20in%20an%20asymmetrical%20MoS2%20tunnel%20junction&rft.jtitle=Applied%20physics%20letters&rft.au=Qiu,%20Xue-Jun&rft.date=2020-09-08&rft.volume=117&rft.issue=10&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0018869&rft_dat=%3Cproquest_scita%3E2441367785%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441367785&rft_id=info:pmid/&rfr_iscdi=true |