Controlled giant magnetoresistance and spin–valley transport in an asymmetrical MoS2 tunnel junction

We study the effects of asymmetrical magnetization and an optoelectronic tunable band structure on the transmission of particles in a MoS2 tunnel junction. Based on the results, we propose a model for a multifunctional coupler as a single system incorporating giant magnetoresistance, a spin–valley f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2020-09, Vol.117 (10)
Hauptverfasser: Qiu, Xue-Jun, Cao, Zhen-Zhou, Hou, Jin, Yang, Chun-Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Applied physics letters
container_volume 117
creator Qiu, Xue-Jun
Cao, Zhen-Zhou
Hou, Jin
Yang, Chun-Yong
description We study the effects of asymmetrical magnetization and an optoelectronic tunable band structure on the transmission of particles in a MoS2 tunnel junction. Based on the results, we propose a model for a multifunctional coupler as a single system incorporating giant magnetoresistance, a spin–valley filter, and a spin–valley valve. The device is made up of ferromagnetic/ferromagnetic/normal junctions, with an off-resonant light and an electric gate potential functioning as the spin–valley filter and spin–valley valve, respectively. Increasing the asymmetrical magnetization is found to substantially enhance the tunneling magnetoresistance (TMR) of the system, leading to giant TMR. The spin–valley filtering is based on the spin imbalance modulation that arises from asymmetrical magnetization and the valley degeneracy breaking of off-resonant light, and the spin–valley valve is produced by altering the effective density of states of spin/valley polarized bands via the gate potential that controls the flow of spin/valley polarized particles. By fixing the magnetization configurations, one specific spin–valley filter and spin–valley valve can be acquired by tuning an external parameter to the corresponding spin/valley polarized energy windows.
doi_str_mv 10.1063/5.0018869
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0018869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2441367785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-858f08174fd1f5d9767feeaaca29f2c7c23441cd50954a2bf499910827239c4c3</originalsourceid><addsrcrecordid>eNp90M1KAzEQAOAgCtbqwTcIeFLYmp_NZnOU4h9UPKjnELNJSdlN1iQr9OY7-IY-iVta9CB4Gob5ZoYZAE4xmmFU0Us2QwjXdSX2wAQjzguKcb0PJgghWlSC4UNwlNJqTBmhdALsPPgcQ9uaBi6d8hl2aulNDtEkl7Ly2kDlG5h6578-Pt_VKNcwR-VTH2KGzo9lqNK660yOTqsWPoQnAvPgvWnhavA6u-CPwYFVbTInuzgFLzfXz_O7YvF4ez-_WhSaEpqLmtUW1ZiXtsGWNYJX3BqjlFZEWKK5JrQssW4YEqxU5NWWQgiMasIJFbrUdArOtnP7GN4Gk7JchSH6caUkYyetOK_ZqM63SseQUjRW9tF1Kq4lRnLzRsnk7o2jvdjapF1Wm1t-8HuIv1D2jf0P_538DXg5gr8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441367785</pqid></control><display><type>article</type><title>Controlled giant magnetoresistance and spin–valley transport in an asymmetrical MoS2 tunnel junction</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Qiu, Xue-Jun ; Cao, Zhen-Zhou ; Hou, Jin ; Yang, Chun-Yong</creator><creatorcontrib>Qiu, Xue-Jun ; Cao, Zhen-Zhou ; Hou, Jin ; Yang, Chun-Yong</creatorcontrib><description>We study the effects of asymmetrical magnetization and an optoelectronic tunable band structure on the transmission of particles in a MoS2 tunnel junction. Based on the results, we propose a model for a multifunctional coupler as a single system incorporating giant magnetoresistance, a spin–valley filter, and a spin–valley valve. The device is made up of ferromagnetic/ferromagnetic/normal junctions, with an off-resonant light and an electric gate potential functioning as the spin–valley filter and spin–valley valve, respectively. Increasing the asymmetrical magnetization is found to substantially enhance the tunneling magnetoresistance (TMR) of the system, leading to giant TMR. The spin–valley filtering is based on the spin imbalance modulation that arises from asymmetrical magnetization and the valley degeneracy breaking of off-resonant light, and the spin–valley valve is produced by altering the effective density of states of spin/valley polarized bands via the gate potential that controls the flow of spin/valley polarized particles. By fixing the magnetization configurations, one specific spin–valley filter and spin–valley valve can be acquired by tuning an external parameter to the corresponding spin/valley polarized energy windows.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0018869</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Asymmetry ; Electrical junctions ; Ferromagnetism ; Giant magnetoresistance ; Magnetism ; Magnetization ; Magnetoresistivity ; Molybdenum disulfide ; Optoelectronics ; Particle spin ; Tunnel junctions ; Valleys</subject><ispartof>Applied physics letters, 2020-09, Vol.117 (10)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-858f08174fd1f5d9767feeaaca29f2c7c23441cd50954a2bf499910827239c4c3</citedby><cites>FETCH-LOGICAL-c323t-858f08174fd1f5d9767feeaaca29f2c7c23441cd50954a2bf499910827239c4c3</cites><orcidid>0000-0002-9948-7343 ; 0000-0001-7055-5341 ; 0000-0002-5026-1247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0018869$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4509,27922,27923,76154</link.rule.ids></links><search><creatorcontrib>Qiu, Xue-Jun</creatorcontrib><creatorcontrib>Cao, Zhen-Zhou</creatorcontrib><creatorcontrib>Hou, Jin</creatorcontrib><creatorcontrib>Yang, Chun-Yong</creatorcontrib><title>Controlled giant magnetoresistance and spin–valley transport in an asymmetrical MoS2 tunnel junction</title><title>Applied physics letters</title><description>We study the effects of asymmetrical magnetization and an optoelectronic tunable band structure on the transmission of particles in a MoS2 tunnel junction. Based on the results, we propose a model for a multifunctional coupler as a single system incorporating giant magnetoresistance, a spin–valley filter, and a spin–valley valve. The device is made up of ferromagnetic/ferromagnetic/normal junctions, with an off-resonant light and an electric gate potential functioning as the spin–valley filter and spin–valley valve, respectively. Increasing the asymmetrical magnetization is found to substantially enhance the tunneling magnetoresistance (TMR) of the system, leading to giant TMR. The spin–valley filtering is based on the spin imbalance modulation that arises from asymmetrical magnetization and the valley degeneracy breaking of off-resonant light, and the spin–valley valve is produced by altering the effective density of states of spin/valley polarized bands via the gate potential that controls the flow of spin/valley polarized particles. By fixing the magnetization configurations, one specific spin–valley filter and spin–valley valve can be acquired by tuning an external parameter to the corresponding spin/valley polarized energy windows.</description><subject>Applied physics</subject><subject>Asymmetry</subject><subject>Electrical junctions</subject><subject>Ferromagnetism</subject><subject>Giant magnetoresistance</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Magnetoresistivity</subject><subject>Molybdenum disulfide</subject><subject>Optoelectronics</subject><subject>Particle spin</subject><subject>Tunnel junctions</subject><subject>Valleys</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEQAOAgCtbqwTcIeFLYmp_NZnOU4h9UPKjnELNJSdlN1iQr9OY7-IY-iVta9CB4Gob5ZoYZAE4xmmFU0Us2QwjXdSX2wAQjzguKcb0PJgghWlSC4UNwlNJqTBmhdALsPPgcQ9uaBi6d8hl2aulNDtEkl7Ly2kDlG5h6578-Pt_VKNcwR-VTH2KGzo9lqNK660yOTqsWPoQnAvPgvWnhavA6u-CPwYFVbTInuzgFLzfXz_O7YvF4ez-_WhSaEpqLmtUW1ZiXtsGWNYJX3BqjlFZEWKK5JrQssW4YEqxU5NWWQgiMasIJFbrUdArOtnP7GN4Gk7JchSH6caUkYyetOK_ZqM63SseQUjRW9tF1Kq4lRnLzRsnk7o2jvdjapF1Wm1t-8HuIv1D2jf0P_538DXg5gr8</recordid><startdate>20200908</startdate><enddate>20200908</enddate><creator>Qiu, Xue-Jun</creator><creator>Cao, Zhen-Zhou</creator><creator>Hou, Jin</creator><creator>Yang, Chun-Yong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9948-7343</orcidid><orcidid>https://orcid.org/0000-0001-7055-5341</orcidid><orcidid>https://orcid.org/0000-0002-5026-1247</orcidid></search><sort><creationdate>20200908</creationdate><title>Controlled giant magnetoresistance and spin–valley transport in an asymmetrical MoS2 tunnel junction</title><author>Qiu, Xue-Jun ; Cao, Zhen-Zhou ; Hou, Jin ; Yang, Chun-Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-858f08174fd1f5d9767feeaaca29f2c7c23441cd50954a2bf499910827239c4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Asymmetry</topic><topic>Electrical junctions</topic><topic>Ferromagnetism</topic><topic>Giant magnetoresistance</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Magnetoresistivity</topic><topic>Molybdenum disulfide</topic><topic>Optoelectronics</topic><topic>Particle spin</topic><topic>Tunnel junctions</topic><topic>Valleys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Xue-Jun</creatorcontrib><creatorcontrib>Cao, Zhen-Zhou</creatorcontrib><creatorcontrib>Hou, Jin</creatorcontrib><creatorcontrib>Yang, Chun-Yong</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Xue-Jun</au><au>Cao, Zhen-Zhou</au><au>Hou, Jin</au><au>Yang, Chun-Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled giant magnetoresistance and spin–valley transport in an asymmetrical MoS2 tunnel junction</atitle><jtitle>Applied physics letters</jtitle><date>2020-09-08</date><risdate>2020</risdate><volume>117</volume><issue>10</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We study the effects of asymmetrical magnetization and an optoelectronic tunable band structure on the transmission of particles in a MoS2 tunnel junction. Based on the results, we propose a model for a multifunctional coupler as a single system incorporating giant magnetoresistance, a spin–valley filter, and a spin–valley valve. The device is made up of ferromagnetic/ferromagnetic/normal junctions, with an off-resonant light and an electric gate potential functioning as the spin–valley filter and spin–valley valve, respectively. Increasing the asymmetrical magnetization is found to substantially enhance the tunneling magnetoresistance (TMR) of the system, leading to giant TMR. The spin–valley filtering is based on the spin imbalance modulation that arises from asymmetrical magnetization and the valley degeneracy breaking of off-resonant light, and the spin–valley valve is produced by altering the effective density of states of spin/valley polarized bands via the gate potential that controls the flow of spin/valley polarized particles. By fixing the magnetization configurations, one specific spin–valley filter and spin–valley valve can be acquired by tuning an external parameter to the corresponding spin/valley polarized energy windows.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0018869</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9948-7343</orcidid><orcidid>https://orcid.org/0000-0001-7055-5341</orcidid><orcidid>https://orcid.org/0000-0002-5026-1247</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2020-09, Vol.117 (10)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_5_0018869
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Asymmetry
Electrical junctions
Ferromagnetism
Giant magnetoresistance
Magnetism
Magnetization
Magnetoresistivity
Molybdenum disulfide
Optoelectronics
Particle spin
Tunnel junctions
Valleys
title Controlled giant magnetoresistance and spin–valley transport in an asymmetrical MoS2 tunnel junction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A12%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20giant%20magnetoresistance%20and%20spin%E2%80%93valley%20transport%20in%20an%20asymmetrical%20MoS2%20tunnel%20junction&rft.jtitle=Applied%20physics%20letters&rft.au=Qiu,%20Xue-Jun&rft.date=2020-09-08&rft.volume=117&rft.issue=10&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0018869&rft_dat=%3Cproquest_scita%3E2441367785%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441367785&rft_id=info:pmid/&rfr_iscdi=true