Ferro-advection aided evaporation kinetics of ferrofluid droplets in magnetic field ambience
The present article discusses the physics and mechanics of evaporation of pendant, aqueous ferrofluid droplets, and modulation of the same by an external magnetic field. We show experimentally and by mathematical analysis that the presence of a horizontal magnetic field augments the evaporation rate...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2020-08, Vol.32 (8) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 32 |
creator | Chattopadhyay, Ankur Dwivedi, Raghvendra Kumar Harikrishnan, A. R. Dhar, Purbarun |
description | The present article discusses the physics and mechanics of evaporation of pendant, aqueous ferrofluid droplets, and modulation of the same by an external magnetic field. We show experimentally and by mathematical analysis that the presence of a horizontal magnetic field augments the evaporation rates of pendant ferrofluid droplets. First, we tackle the question of improved evaporation of the colloidal droplets compared to water and propose physical mechanisms to explain the same. Experiments show that the changes in evaporation rates aided by the magnetic field cannot be explained on the basis of changes in surface tension or based on classical diffusion driven evaporation models. Probing via particle image velocimetry shows that the internal advection kinetics of such droplets plays a direct role toward the augmented evaporation rates by modulating the associated Stefan flow. Infrared thermography reveals changes in thermal gradients within the droplet and evaluating the dynamic surface tension reveals the presence of solutal gradients within the droplet, both brought about by the external field. Based on the premise, a scaling analysis of the internal magneto-thermal and magneto-solutal ferroadvection behavior is presented. The model incorporates the role of the governing Hartmann number, the magneto-thermal Prandtl number, and the magneto-solutal Schmidt number. The analysis and stability maps reveal that the magneto-solutal ferroadvection is the more dominant mechanism, and the model is able to predict the internal advection velocities with accuracy. Furthermore, another scaling model to predict the modified Stefan flow is proposed and is found to accurately predict the improved evaporation rates. |
doi_str_mv | 10.1063/5.0018815 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0018815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430231989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-8e2b68e39b5216c338b50ac41c02755ba20871839c3cf0fcf7a06c6ecd8a5e473</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtbqwX8Q8KSwdZJ0s9mjFKtCwYvehJBNJpK63azJtuC_t1_g3dMMw8M78BJyzWDCQIr7cgLAlGLlCRkxUHVRSSlPd3sFhZSCnZOLnJcAIGouR-RjjinFwrgN2iHEjprg0FHcmD4ms798hQ6HYDONnvqd9u06OOpS7FscMg0dXZnPvaE-YOuoWTUBO4uX5MybNuPVcY7J-_zxbfZcLF6fXmYPi8IKXg2FQt5IhaJuSs6kFUI1JRg7ZRZ4VZaN4aAqpkRthfXgra8MSCvROmVKnFZiTG4OuX2K32vMg17Gdeq2LzWfCuCC1areqtuDsinmnNDrPoWVST-agd6Vp0t9LG9r7w422zDsa_gf3sT0B3XvvPgFvoN94Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430231989</pqid></control><display><type>article</type><title>Ferro-advection aided evaporation kinetics of ferrofluid droplets in magnetic field ambience</title><source>Scitation (American Institute of Physics)</source><source>Alma/SFX Local Collection</source><creator>Chattopadhyay, Ankur ; Dwivedi, Raghvendra Kumar ; Harikrishnan, A. R. ; Dhar, Purbarun</creator><creatorcontrib>Chattopadhyay, Ankur ; Dwivedi, Raghvendra Kumar ; Harikrishnan, A. R. ; Dhar, Purbarun</creatorcontrib><description>The present article discusses the physics and mechanics of evaporation of pendant, aqueous ferrofluid droplets, and modulation of the same by an external magnetic field. We show experimentally and by mathematical analysis that the presence of a horizontal magnetic field augments the evaporation rates of pendant ferrofluid droplets. First, we tackle the question of improved evaporation of the colloidal droplets compared to water and propose physical mechanisms to explain the same. Experiments show that the changes in evaporation rates aided by the magnetic field cannot be explained on the basis of changes in surface tension or based on classical diffusion driven evaporation models. Probing via particle image velocimetry shows that the internal advection kinetics of such droplets plays a direct role toward the augmented evaporation rates by modulating the associated Stefan flow. Infrared thermography reveals changes in thermal gradients within the droplet and evaluating the dynamic surface tension reveals the presence of solutal gradients within the droplet, both brought about by the external field. Based on the premise, a scaling analysis of the internal magneto-thermal and magneto-solutal ferroadvection behavior is presented. The model incorporates the role of the governing Hartmann number, the magneto-thermal Prandtl number, and the magneto-solutal Schmidt number. The analysis and stability maps reveal that the magneto-solutal ferroadvection is the more dominant mechanism, and the model is able to predict the internal advection velocities with accuracy. Furthermore, another scaling model to predict the modified Stefan flow is proposed and is found to accurately predict the improved evaporation rates.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0018815</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Advection ; Ambience ; Droplets ; Evaporation ; Evaporation rate ; Ferrofluids ; Fluid dynamics ; Hartmann number ; Infrared imaging ; Kinetics ; Magnetic fields ; Mathematical analysis ; Model accuracy ; Particle image velocimetry ; Physics ; Prandtl number ; Schmidt number ; Stability analysis ; Surface tension ; Thermography</subject><ispartof>Physics of fluids (1994), 2020-08, Vol.32 (8)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-8e2b68e39b5216c338b50ac41c02755ba20871839c3cf0fcf7a06c6ecd8a5e473</citedby><cites>FETCH-LOGICAL-c327t-8e2b68e39b5216c338b50ac41c02755ba20871839c3cf0fcf7a06c6ecd8a5e473</cites><orcidid>0000-0001-5473-2993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Chattopadhyay, Ankur</creatorcontrib><creatorcontrib>Dwivedi, Raghvendra Kumar</creatorcontrib><creatorcontrib>Harikrishnan, A. R.</creatorcontrib><creatorcontrib>Dhar, Purbarun</creatorcontrib><title>Ferro-advection aided evaporation kinetics of ferrofluid droplets in magnetic field ambience</title><title>Physics of fluids (1994)</title><description>The present article discusses the physics and mechanics of evaporation of pendant, aqueous ferrofluid droplets, and modulation of the same by an external magnetic field. We show experimentally and by mathematical analysis that the presence of a horizontal magnetic field augments the evaporation rates of pendant ferrofluid droplets. First, we tackle the question of improved evaporation of the colloidal droplets compared to water and propose physical mechanisms to explain the same. Experiments show that the changes in evaporation rates aided by the magnetic field cannot be explained on the basis of changes in surface tension or based on classical diffusion driven evaporation models. Probing via particle image velocimetry shows that the internal advection kinetics of such droplets plays a direct role toward the augmented evaporation rates by modulating the associated Stefan flow. Infrared thermography reveals changes in thermal gradients within the droplet and evaluating the dynamic surface tension reveals the presence of solutal gradients within the droplet, both brought about by the external field. Based on the premise, a scaling analysis of the internal magneto-thermal and magneto-solutal ferroadvection behavior is presented. The model incorporates the role of the governing Hartmann number, the magneto-thermal Prandtl number, and the magneto-solutal Schmidt number. The analysis and stability maps reveal that the magneto-solutal ferroadvection is the more dominant mechanism, and the model is able to predict the internal advection velocities with accuracy. Furthermore, another scaling model to predict the modified Stefan flow is proposed and is found to accurately predict the improved evaporation rates.</description><subject>Advection</subject><subject>Ambience</subject><subject>Droplets</subject><subject>Evaporation</subject><subject>Evaporation rate</subject><subject>Ferrofluids</subject><subject>Fluid dynamics</subject><subject>Hartmann number</subject><subject>Infrared imaging</subject><subject>Kinetics</subject><subject>Magnetic fields</subject><subject>Mathematical analysis</subject><subject>Model accuracy</subject><subject>Particle image velocimetry</subject><subject>Physics</subject><subject>Prandtl number</subject><subject>Schmidt number</subject><subject>Stability analysis</subject><subject>Surface tension</subject><subject>Thermography</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtbqwX8Q8KSwdZJ0s9mjFKtCwYvehJBNJpK63azJtuC_t1_g3dMMw8M78BJyzWDCQIr7cgLAlGLlCRkxUHVRSSlPd3sFhZSCnZOLnJcAIGouR-RjjinFwrgN2iHEjprg0FHcmD4ms798hQ6HYDONnvqd9u06OOpS7FscMg0dXZnPvaE-YOuoWTUBO4uX5MybNuPVcY7J-_zxbfZcLF6fXmYPi8IKXg2FQt5IhaJuSs6kFUI1JRg7ZRZ4VZaN4aAqpkRthfXgra8MSCvROmVKnFZiTG4OuX2K32vMg17Gdeq2LzWfCuCC1areqtuDsinmnNDrPoWVST-agd6Vp0t9LG9r7w422zDsa_gf3sT0B3XvvPgFvoN94Q</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Chattopadhyay, Ankur</creator><creator>Dwivedi, Raghvendra Kumar</creator><creator>Harikrishnan, A. R.</creator><creator>Dhar, Purbarun</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5473-2993</orcidid></search><sort><creationdate>20200801</creationdate><title>Ferro-advection aided evaporation kinetics of ferrofluid droplets in magnetic field ambience</title><author>Chattopadhyay, Ankur ; Dwivedi, Raghvendra Kumar ; Harikrishnan, A. R. ; Dhar, Purbarun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-8e2b68e39b5216c338b50ac41c02755ba20871839c3cf0fcf7a06c6ecd8a5e473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Advection</topic><topic>Ambience</topic><topic>Droplets</topic><topic>Evaporation</topic><topic>Evaporation rate</topic><topic>Ferrofluids</topic><topic>Fluid dynamics</topic><topic>Hartmann number</topic><topic>Infrared imaging</topic><topic>Kinetics</topic><topic>Magnetic fields</topic><topic>Mathematical analysis</topic><topic>Model accuracy</topic><topic>Particle image velocimetry</topic><topic>Physics</topic><topic>Prandtl number</topic><topic>Schmidt number</topic><topic>Stability analysis</topic><topic>Surface tension</topic><topic>Thermography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chattopadhyay, Ankur</creatorcontrib><creatorcontrib>Dwivedi, Raghvendra Kumar</creatorcontrib><creatorcontrib>Harikrishnan, A. R.</creatorcontrib><creatorcontrib>Dhar, Purbarun</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chattopadhyay, Ankur</au><au>Dwivedi, Raghvendra Kumar</au><au>Harikrishnan, A. R.</au><au>Dhar, Purbarun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferro-advection aided evaporation kinetics of ferrofluid droplets in magnetic field ambience</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>32</volume><issue>8</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The present article discusses the physics and mechanics of evaporation of pendant, aqueous ferrofluid droplets, and modulation of the same by an external magnetic field. We show experimentally and by mathematical analysis that the presence of a horizontal magnetic field augments the evaporation rates of pendant ferrofluid droplets. First, we tackle the question of improved evaporation of the colloidal droplets compared to water and propose physical mechanisms to explain the same. Experiments show that the changes in evaporation rates aided by the magnetic field cannot be explained on the basis of changes in surface tension or based on classical diffusion driven evaporation models. Probing via particle image velocimetry shows that the internal advection kinetics of such droplets plays a direct role toward the augmented evaporation rates by modulating the associated Stefan flow. Infrared thermography reveals changes in thermal gradients within the droplet and evaluating the dynamic surface tension reveals the presence of solutal gradients within the droplet, both brought about by the external field. Based on the premise, a scaling analysis of the internal magneto-thermal and magneto-solutal ferroadvection behavior is presented. The model incorporates the role of the governing Hartmann number, the magneto-thermal Prandtl number, and the magneto-solutal Schmidt number. The analysis and stability maps reveal that the magneto-solutal ferroadvection is the more dominant mechanism, and the model is able to predict the internal advection velocities with accuracy. Furthermore, another scaling model to predict the modified Stefan flow is proposed and is found to accurately predict the improved evaporation rates.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0018815</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5473-2993</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2020-08, Vol.32 (8) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0018815 |
source | Scitation (American Institute of Physics); Alma/SFX Local Collection |
subjects | Advection Ambience Droplets Evaporation Evaporation rate Ferrofluids Fluid dynamics Hartmann number Infrared imaging Kinetics Magnetic fields Mathematical analysis Model accuracy Particle image velocimetry Physics Prandtl number Schmidt number Stability analysis Surface tension Thermography |
title | Ferro-advection aided evaporation kinetics of ferrofluid droplets in magnetic field ambience |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T05%3A46%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferro-advection%20aided%20evaporation%20kinetics%20of%20ferrofluid%20droplets%20in%20magnetic%20field%20ambience&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Chattopadhyay,%20Ankur&rft.date=2020-08-01&rft.volume=32&rft.issue=8&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0018815&rft_dat=%3Cproquest_scita%3E2430231989%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430231989&rft_id=info:pmid/&rfr_iscdi=true |