Boundary integral method for the two dimensional potential flow around a regular body

The boundary integral formulation is presented for simulating potential flow around a regular body in two dimensions. The fluid flows with a constant horizontal velocity, and is assumed to be irrotational and inviscid. We elucidate the process in building problem and how to resolve it using the boun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Noviani, Evi, Dambrine, Julien
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2268
creator Noviani, Evi
Dambrine, Julien
description The boundary integral formulation is presented for simulating potential flow around a regular body in two dimensions. The fluid flows with a constant horizontal velocity, and is assumed to be irrotational and inviscid. We elucidate the process in building problem and how to resolve it using the boundary integral method. Making use the two dimensional Green function for the Laplace equation, we derive the boundary integral equation. Hence, we can compute the solution of the problem numerically. Further, we represent the velocity profiles of the fluid past a circular obstacle.
doi_str_mv 10.1063/5.0017343
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0017343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2443703016</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-301c600fe03a12ba7e7b7aaace6fc51471acbbf3a71ebc5e251648c300c89f383</originalsourceid><addsrcrecordid>eNotUMtKAzEUDaJgrS78g4A7YerN5DVdarEqFNxYcBcymaSdMp2MSYbSvzelXd0D93BeCD0SmBEQ9IXPAIikjF6hCeGcFFIQcY0mAHNWlIz-3qK7GHcA5VzKaoLWb37sGx2OuO2T3QTd4b1NW99g5wNOW4vTweOm3ds-tr7P78En26c2I9f5A9bhJIA1DnYzdjrg2jfHe3TjdBftw-VO0Xr5_rP4LFbfH1-L11UxEEpTQYEYAeAsUE3KWksra6m1NlY4wwmTRJu6dlRLYmvDbcmJYJWhAKaaO1rRKXo66w7B_402JrXzY8gpoyoZoxKyg8is5zMrmjbplGuoIbT7XFoRUKfZFFeX2eg_IjZf5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2443703016</pqid></control><display><type>conference_proceeding</type><title>Boundary integral method for the two dimensional potential flow around a regular body</title><source>AIP Journals Complete</source><creator>Noviani, Evi ; Dambrine, Julien</creator><contributor>Noviani, Evi ; Kusnandar, Dadan ; Yundari, Yundari</contributor><creatorcontrib>Noviani, Evi ; Dambrine, Julien ; Noviani, Evi ; Kusnandar, Dadan ; Yundari, Yundari</creatorcontrib><description>The boundary integral formulation is presented for simulating potential flow around a regular body in two dimensions. The fluid flows with a constant horizontal velocity, and is assumed to be irrotational and inviscid. We elucidate the process in building problem and how to resolve it using the boundary integral method. Making use the two dimensional Green function for the Laplace equation, we derive the boundary integral equation. Hence, we can compute the solution of the problem numerically. Further, we represent the velocity profiles of the fluid past a circular obstacle.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0017343</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boundary integral method ; Computational fluid dynamics ; Computer simulation ; Fluid flow ; Green's functions ; Integral equations ; Laplace equation ; Potential flow ; Two dimensional bodies ; Two dimensional flow ; Velocity distribution</subject><ispartof>AIP conference proceedings, 2020, Vol.2268 (1)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0017343$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4510,23929,23930,25139,27923,27924,76155</link.rule.ids></links><search><contributor>Noviani, Evi</contributor><contributor>Kusnandar, Dadan</contributor><contributor>Yundari, Yundari</contributor><creatorcontrib>Noviani, Evi</creatorcontrib><creatorcontrib>Dambrine, Julien</creatorcontrib><title>Boundary integral method for the two dimensional potential flow around a regular body</title><title>AIP conference proceedings</title><description>The boundary integral formulation is presented for simulating potential flow around a regular body in two dimensions. The fluid flows with a constant horizontal velocity, and is assumed to be irrotational and inviscid. We elucidate the process in building problem and how to resolve it using the boundary integral method. Making use the two dimensional Green function for the Laplace equation, we derive the boundary integral equation. Hence, we can compute the solution of the problem numerically. Further, we represent the velocity profiles of the fluid past a circular obstacle.</description><subject>Boundary integral method</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Fluid flow</subject><subject>Green's functions</subject><subject>Integral equations</subject><subject>Laplace equation</subject><subject>Potential flow</subject><subject>Two dimensional bodies</subject><subject>Two dimensional flow</subject><subject>Velocity distribution</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotUMtKAzEUDaJgrS78g4A7YerN5DVdarEqFNxYcBcymaSdMp2MSYbSvzelXd0D93BeCD0SmBEQ9IXPAIikjF6hCeGcFFIQcY0mAHNWlIz-3qK7GHcA5VzKaoLWb37sGx2OuO2T3QTd4b1NW99g5wNOW4vTweOm3ds-tr7P78En26c2I9f5A9bhJIA1DnYzdjrg2jfHe3TjdBftw-VO0Xr5_rP4LFbfH1-L11UxEEpTQYEYAeAsUE3KWksra6m1NlY4wwmTRJu6dlRLYmvDbcmJYJWhAKaaO1rRKXo66w7B_402JrXzY8gpoyoZoxKyg8is5zMrmjbplGuoIbT7XFoRUKfZFFeX2eg_IjZf5Q</recordid><startdate>20200915</startdate><enddate>20200915</enddate><creator>Noviani, Evi</creator><creator>Dambrine, Julien</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20200915</creationdate><title>Boundary integral method for the two dimensional potential flow around a regular body</title><author>Noviani, Evi ; Dambrine, Julien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-301c600fe03a12ba7e7b7aaace6fc51471acbbf3a71ebc5e251648c300c89f383</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boundary integral method</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Fluid flow</topic><topic>Green's functions</topic><topic>Integral equations</topic><topic>Laplace equation</topic><topic>Potential flow</topic><topic>Two dimensional bodies</topic><topic>Two dimensional flow</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noviani, Evi</creatorcontrib><creatorcontrib>Dambrine, Julien</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noviani, Evi</au><au>Dambrine, Julien</au><au>Noviani, Evi</au><au>Kusnandar, Dadan</au><au>Yundari, Yundari</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Boundary integral method for the two dimensional potential flow around a regular body</atitle><btitle>AIP conference proceedings</btitle><date>2020-09-15</date><risdate>2020</risdate><volume>2268</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The boundary integral formulation is presented for simulating potential flow around a regular body in two dimensions. The fluid flows with a constant horizontal velocity, and is assumed to be irrotational and inviscid. We elucidate the process in building problem and how to resolve it using the boundary integral method. Making use the two dimensional Green function for the Laplace equation, we derive the boundary integral equation. Hence, we can compute the solution of the problem numerically. Further, we represent the velocity profiles of the fluid past a circular obstacle.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0017343</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2020, Vol.2268 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0017343
source AIP Journals Complete
subjects Boundary integral method
Computational fluid dynamics
Computer simulation
Fluid flow
Green's functions
Integral equations
Laplace equation
Potential flow
Two dimensional bodies
Two dimensional flow
Velocity distribution
title Boundary integral method for the two dimensional potential flow around a regular body
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A47%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Boundary%20integral%20method%20for%20the%20two%20dimensional%20potential%20flow%20around%20a%20regular%20body&rft.btitle=AIP%20conference%20proceedings&rft.au=Noviani,%20Evi&rft.date=2020-09-15&rft.volume=2268&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0017343&rft_dat=%3Cproquest_scita%3E2443703016%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443703016&rft_id=info:pmid/&rfr_iscdi=true