Boundary integral method for the two dimensional potential flow around a regular body
The boundary integral formulation is presented for simulating potential flow around a regular body in two dimensions. The fluid flows with a constant horizontal velocity, and is assumed to be irrotational and inviscid. We elucidate the process in building problem and how to resolve it using the boun...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2268 |
creator | Noviani, Evi Dambrine, Julien |
description | The boundary integral formulation is presented for simulating potential flow around a regular body in two dimensions. The fluid flows with a constant horizontal velocity, and is assumed to be irrotational and inviscid. We elucidate the process in building problem and how to resolve it using the boundary integral method. Making use the two dimensional Green function for the Laplace equation, we derive the boundary integral equation. Hence, we can compute the solution of the problem numerically. Further, we represent the velocity profiles of the fluid past a circular obstacle. |
doi_str_mv | 10.1063/5.0017343 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0017343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2443703016</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-301c600fe03a12ba7e7b7aaace6fc51471acbbf3a71ebc5e251648c300c89f383</originalsourceid><addsrcrecordid>eNotUMtKAzEUDaJgrS78g4A7YerN5DVdarEqFNxYcBcymaSdMp2MSYbSvzelXd0D93BeCD0SmBEQ9IXPAIikjF6hCeGcFFIQcY0mAHNWlIz-3qK7GHcA5VzKaoLWb37sGx2OuO2T3QTd4b1NW99g5wNOW4vTweOm3ds-tr7P78En26c2I9f5A9bhJIA1DnYzdjrg2jfHe3TjdBftw-VO0Xr5_rP4LFbfH1-L11UxEEpTQYEYAeAsUE3KWksra6m1NlY4wwmTRJu6dlRLYmvDbcmJYJWhAKaaO1rRKXo66w7B_402JrXzY8gpoyoZoxKyg8is5zMrmjbplGuoIbT7XFoRUKfZFFeX2eg_IjZf5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2443703016</pqid></control><display><type>conference_proceeding</type><title>Boundary integral method for the two dimensional potential flow around a regular body</title><source>AIP Journals Complete</source><creator>Noviani, Evi ; Dambrine, Julien</creator><contributor>Noviani, Evi ; Kusnandar, Dadan ; Yundari, Yundari</contributor><creatorcontrib>Noviani, Evi ; Dambrine, Julien ; Noviani, Evi ; Kusnandar, Dadan ; Yundari, Yundari</creatorcontrib><description>The boundary integral formulation is presented for simulating potential flow around a regular body in two dimensions. The fluid flows with a constant horizontal velocity, and is assumed to be irrotational and inviscid. We elucidate the process in building problem and how to resolve it using the boundary integral method. Making use the two dimensional Green function for the Laplace equation, we derive the boundary integral equation. Hence, we can compute the solution of the problem numerically. Further, we represent the velocity profiles of the fluid past a circular obstacle.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0017343</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boundary integral method ; Computational fluid dynamics ; Computer simulation ; Fluid flow ; Green's functions ; Integral equations ; Laplace equation ; Potential flow ; Two dimensional bodies ; Two dimensional flow ; Velocity distribution</subject><ispartof>AIP conference proceedings, 2020, Vol.2268 (1)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0017343$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4510,23929,23930,25139,27923,27924,76155</link.rule.ids></links><search><contributor>Noviani, Evi</contributor><contributor>Kusnandar, Dadan</contributor><contributor>Yundari, Yundari</contributor><creatorcontrib>Noviani, Evi</creatorcontrib><creatorcontrib>Dambrine, Julien</creatorcontrib><title>Boundary integral method for the two dimensional potential flow around a regular body</title><title>AIP conference proceedings</title><description>The boundary integral formulation is presented for simulating potential flow around a regular body in two dimensions. The fluid flows with a constant horizontal velocity, and is assumed to be irrotational and inviscid. We elucidate the process in building problem and how to resolve it using the boundary integral method. Making use the two dimensional Green function for the Laplace equation, we derive the boundary integral equation. Hence, we can compute the solution of the problem numerically. Further, we represent the velocity profiles of the fluid past a circular obstacle.</description><subject>Boundary integral method</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Fluid flow</subject><subject>Green's functions</subject><subject>Integral equations</subject><subject>Laplace equation</subject><subject>Potential flow</subject><subject>Two dimensional bodies</subject><subject>Two dimensional flow</subject><subject>Velocity distribution</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotUMtKAzEUDaJgrS78g4A7YerN5DVdarEqFNxYcBcymaSdMp2MSYbSvzelXd0D93BeCD0SmBEQ9IXPAIikjF6hCeGcFFIQcY0mAHNWlIz-3qK7GHcA5VzKaoLWb37sGx2OuO2T3QTd4b1NW99g5wNOW4vTweOm3ds-tr7P78En26c2I9f5A9bhJIA1DnYzdjrg2jfHe3TjdBftw-VO0Xr5_rP4LFbfH1-L11UxEEpTQYEYAeAsUE3KWksra6m1NlY4wwmTRJu6dlRLYmvDbcmJYJWhAKaaO1rRKXo66w7B_402JrXzY8gpoyoZoxKyg8is5zMrmjbplGuoIbT7XFoRUKfZFFeX2eg_IjZf5Q</recordid><startdate>20200915</startdate><enddate>20200915</enddate><creator>Noviani, Evi</creator><creator>Dambrine, Julien</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20200915</creationdate><title>Boundary integral method for the two dimensional potential flow around a regular body</title><author>Noviani, Evi ; Dambrine, Julien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-301c600fe03a12ba7e7b7aaace6fc51471acbbf3a71ebc5e251648c300c89f383</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boundary integral method</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Fluid flow</topic><topic>Green's functions</topic><topic>Integral equations</topic><topic>Laplace equation</topic><topic>Potential flow</topic><topic>Two dimensional bodies</topic><topic>Two dimensional flow</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noviani, Evi</creatorcontrib><creatorcontrib>Dambrine, Julien</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noviani, Evi</au><au>Dambrine, Julien</au><au>Noviani, Evi</au><au>Kusnandar, Dadan</au><au>Yundari, Yundari</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Boundary integral method for the two dimensional potential flow around a regular body</atitle><btitle>AIP conference proceedings</btitle><date>2020-09-15</date><risdate>2020</risdate><volume>2268</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The boundary integral formulation is presented for simulating potential flow around a regular body in two dimensions. The fluid flows with a constant horizontal velocity, and is assumed to be irrotational and inviscid. We elucidate the process in building problem and how to resolve it using the boundary integral method. Making use the two dimensional Green function for the Laplace equation, we derive the boundary integral equation. Hence, we can compute the solution of the problem numerically. Further, we represent the velocity profiles of the fluid past a circular obstacle.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0017343</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2020, Vol.2268 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0017343 |
source | AIP Journals Complete |
subjects | Boundary integral method Computational fluid dynamics Computer simulation Fluid flow Green's functions Integral equations Laplace equation Potential flow Two dimensional bodies Two dimensional flow Velocity distribution |
title | Boundary integral method for the two dimensional potential flow around a regular body |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A47%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Boundary%20integral%20method%20for%20the%20two%20dimensional%20potential%20flow%20around%20a%20regular%20body&rft.btitle=AIP%20conference%20proceedings&rft.au=Noviani,%20Evi&rft.date=2020-09-15&rft.volume=2268&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0017343&rft_dat=%3Cproquest_scita%3E2443703016%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443703016&rft_id=info:pmid/&rfr_iscdi=true |