On a class of Gaussian integer solutions for an elliptic curve

The quadratic Diophantine equation with two unknown represented by an elliptic curve D : 76J2 + 649K2 – 436JK = 1600 is analyzed for its non-zero distinct solutions in Z[i]. We also derive some formulae and recurrence relations on the Gaussian integer solutions (Jn, Kn) of D.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP conference proceedings 2020-10, Vol.2261 (1)
Hauptverfasser: Kannan, J., Kaleeswari, K., Cruz, M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title AIP conference proceedings
container_volume 2261
creator Kannan, J.
Kaleeswari, K.
Cruz, M.
description The quadratic Diophantine equation with two unknown represented by an elliptic curve D : 76J2 + 649K2 – 436JK = 1600 is analyzed for its non-zero distinct solutions in Z[i]. We also derive some formulae and recurrence relations on the Gaussian integer solutions (Jn, Kn) of D.
doi_str_mv 10.1063/5.0016853
format Article
fullrecord <record><control><sourceid>scitation</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0016853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>acp</sourcerecordid><originalsourceid>FETCH-scitation_primary_10_1063_5_00168533</originalsourceid><addsrcrecordid>eNqtjr0KwjAURoMoWH8G3-DOQvWmadq6uIg_m4uDWwg1lUhsSm4r-PYqCL6A0zd858BhbMZxwTETS7lA5FkhRY9FXEoe5xnP-ixCXKVxkorzkI2IbojJKs-LiK2PNWgonSYCX8Fed0RW12Dr1lxNAPKua62vCSof4H0Y52zT2hLKLjzMhA0q7chMvztm8932tDnEVNpWf0TVBHvX4ak4qk-hkupbKP4FP3z4gaq5VOIFQ6NPOQ</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On a class of Gaussian integer solutions for an elliptic curve</title><source>AIP Journals Complete</source><creator>Kannan, J. ; Kaleeswari, K. ; Cruz, M.</creator><contributor>Narayanamoorthy, Samayan</contributor><creatorcontrib>Kannan, J. ; Kaleeswari, K. ; Cruz, M. ; Narayanamoorthy, Samayan</creatorcontrib><description>The quadratic Diophantine equation with two unknown represented by an elliptic curve D : 76J2 + 649K2 – 436JK = 1600 is analyzed for its non-zero distinct solutions in Z[i]. We also derive some formulae and recurrence relations on the Gaussian integer solutions (Jn, Kn) of D.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0016853</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><ispartof>AIP conference proceedings, 2020-10, Vol.2261 (1)</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0016853$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76353</link.rule.ids></links><search><contributor>Narayanamoorthy, Samayan</contributor><creatorcontrib>Kannan, J.</creatorcontrib><creatorcontrib>Kaleeswari, K.</creatorcontrib><creatorcontrib>Cruz, M.</creatorcontrib><title>On a class of Gaussian integer solutions for an elliptic curve</title><title>AIP conference proceedings</title><description>The quadratic Diophantine equation with two unknown represented by an elliptic curve D : 76J2 + 649K2 – 436JK = 1600 is analyzed for its non-zero distinct solutions in Z[i]. We also derive some formulae and recurrence relations on the Gaussian integer solutions (Jn, Kn) of D.</description><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqtjr0KwjAURoMoWH8G3-DOQvWmadq6uIg_m4uDWwg1lUhsSm4r-PYqCL6A0zd858BhbMZxwTETS7lA5FkhRY9FXEoe5xnP-ixCXKVxkorzkI2IbojJKs-LiK2PNWgonSYCX8Fed0RW12Dr1lxNAPKua62vCSof4H0Y52zT2hLKLjzMhA0q7chMvztm8932tDnEVNpWf0TVBHvX4ak4qk-hkupbKP4FP3z4gaq5VOIFQ6NPOQ</recordid><startdate>20201005</startdate><enddate>20201005</enddate><creator>Kannan, J.</creator><creator>Kaleeswari, K.</creator><creator>Cruz, M.</creator><scope/></search><sort><creationdate>20201005</creationdate><title>On a class of Gaussian integer solutions for an elliptic curve</title><author>Kannan, J. ; Kaleeswari, K. ; Cruz, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-scitation_primary_10_1063_5_00168533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kannan, J.</creatorcontrib><creatorcontrib>Kaleeswari, K.</creatorcontrib><creatorcontrib>Cruz, M.</creatorcontrib><jtitle>AIP conference proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kannan, J.</au><au>Kaleeswari, K.</au><au>Cruz, M.</au><au>Narayanamoorthy, Samayan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a class of Gaussian integer solutions for an elliptic curve</atitle><jtitle>AIP conference proceedings</jtitle><date>2020-10-05</date><risdate>2020</risdate><volume>2261</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The quadratic Diophantine equation with two unknown represented by an elliptic curve D : 76J2 + 649K2 – 436JK = 1600 is analyzed for its non-zero distinct solutions in Z[i]. We also derive some formulae and recurrence relations on the Gaussian integer solutions (Jn, Kn) of D.</abstract><doi>10.1063/5.0016853</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2020-10, Vol.2261 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0016853
source AIP Journals Complete
title On a class of Gaussian integer solutions for an elliptic curve
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A44%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20class%20of%20Gaussian%20integer%20solutions%20for%20an%20elliptic%20curve&rft.jtitle=AIP%20conference%20proceedings&rft.au=Kannan,%20J.&rft.date=2020-10-05&rft.volume=2261&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0016853&rft_dat=%3Cscitation%3Eacp%3C/scitation%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true