Design and characteristics of a cavity-enhanced Fourier-transform spectrometer based on a supercontinuum source
We report the in-house fabrication of a high-resolution Fourier-transform spectrometer (FTS) for the spectroscopy of molecules in the gas phase at resolutions down to 0.002 cm−1 working in the spectral range from 5880 cm−1 (1.7 μm) to 15 380 cm−1 (650 nm). The FTS employs a supercontinuum as a broad...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2020-11, Vol.91 (11), p.113104-113104, Article 113104 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 113104 |
---|---|
container_issue | 11 |
container_start_page | 113104 |
container_title | Review of scientific instruments |
container_volume | 91 |
creator | Libert, A. Urbain, X. Fabre, B. Daman, M. Lauzin, C. |
description | We report the in-house fabrication of a high-resolution Fourier-transform spectrometer (FTS) for the spectroscopy of molecules in the gas phase at resolutions down to 0.002 cm−1 working in the spectral range from 5880 cm−1 (1.7 μm) to 15 380 cm−1 (650 nm). The FTS employs a supercontinuum as a broadband light source and a He:Ne laser with a homemade frequency-stabilization scheme as the spatial reference for the sampling of the interferogram on a constant optical path difference (OPD) grid. The sampling of the two lasers is performed at constant time intervals, and the resampling process is performed at the software level. The resampling of the interferogram on a constant OPD grid relies on cubic approximations of the He:Ne interference pattern to determine its zero-crossings. The use of an invariant in the sampling process allows us to perform on-the-fly data treatment. Both the hardware aspect and the data processing are described with, in each case, an original approach. We also report the successful coupling of the FTS with a high finesse optical cavity with effective mirror reflectivities of 99.76%, allowing us to reach sensitivities down to 6.5 × 10−8 cm−1 with a root-mean-square accuracy of 0.0017 cm−1 on the position of the Doppler-broadened transitions with a mean transition width of 0.046 cm−1 for spectra recorded at a spectral resolution of 0.015 cm−1. The sensitivity of the instrument per spectral element, once normalized, represents the best sensitivity reported in the literature for Fourier-transform incoherent broadband cavity-enhanced absorption spectroscopy with a supercontinuum light source. |
doi_str_mv | 10.1063/5.0016789 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0016789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457777866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-2aa361527568e5591ccf79db9ac49c2da0f8967063934ff746f7e25179c83fa43</originalsourceid><addsrcrecordid>eNqN0U1rVTEQBuAgir1WF_6DgButnJrvj6VcWxUKbnR9yM2Z2JR7k2OSU-m_N5dTKiiIs8nmmWEmL0IvKTmnRPF38pwQqrSxj9CGEmMHrRh_jDaEcDEoLcwJelbrDeklKX2KTjhnigouNyh_gBq_J-zShP21K843KLG26CvOATvs3W1sdwOka5c8TPgyLyVCGVpxqYZcDrjO4FvJB-ideOdqR7kPxHWZoficWkzL0llv9PAcPQluX-HF_XuKvl1efN1-Gq6-fPy8fX81eK5IG5hzXFHJtFQGpLTU-6DttLPOC-vZ5EgwVul-vOUiBC1U0MAk1dYbHpzgp-j1Oncu-ccCtY2HWD3s9y5BXurIhFLMCsVUp6_-oDd91dS360rqXkYd1ZtV-ZJrLRDGucSDK3cjJeMxhVGO9yl0a1b7E3Y5VB-hf92DP6ZgNGGUHQOh29hcizlt85Jab337_61dn626w3XKA73N5fdG4zyFf-G_T_gFHdO1CA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457777866</pqid></control><display><type>article</type><title>Design and characteristics of a cavity-enhanced Fourier-transform spectrometer based on a supercontinuum source</title><source>AIP Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Alma/SFX Local Collection</source><creator>Libert, A. ; Urbain, X. ; Fabre, B. ; Daman, M. ; Lauzin, C.</creator><creatorcontrib>Libert, A. ; Urbain, X. ; Fabre, B. ; Daman, M. ; Lauzin, C.</creatorcontrib><description>We report the in-house fabrication of a high-resolution Fourier-transform spectrometer (FTS) for the spectroscopy of molecules in the gas phase at resolutions down to 0.002 cm−1 working in the spectral range from 5880 cm−1 (1.7 μm) to 15 380 cm−1 (650 nm). The FTS employs a supercontinuum as a broadband light source and a He:Ne laser with a homemade frequency-stabilization scheme as the spatial reference for the sampling of the interferogram on a constant optical path difference (OPD) grid. The sampling of the two lasers is performed at constant time intervals, and the resampling process is performed at the software level. The resampling of the interferogram on a constant OPD grid relies on cubic approximations of the He:Ne interference pattern to determine its zero-crossings. The use of an invariant in the sampling process allows us to perform on-the-fly data treatment. Both the hardware aspect and the data processing are described with, in each case, an original approach. We also report the successful coupling of the FTS with a high finesse optical cavity with effective mirror reflectivities of 99.76%, allowing us to reach sensitivities down to 6.5 × 10−8 cm−1 with a root-mean-square accuracy of 0.0017 cm−1 on the position of the Doppler-broadened transitions with a mean transition width of 0.046 cm−1 for spectra recorded at a spectral resolution of 0.015 cm−1. The sensitivity of the instrument per spectral element, once normalized, represents the best sensitivity reported in the literature for Fourier-transform incoherent broadband cavity-enhanced absorption spectroscopy with a supercontinuum light source.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/5.0016789</identifier><identifier>PMID: 33261435</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>MELVILLE: Amer Inst Physics</publisher><subject>Broadband ; Coupling (molecular) ; Data processing ; Fourier transform spectrometers ; Instruments & Instrumentation ; Light sources ; Physical Sciences ; Physics ; Physics, Applied ; Resampling ; Sampling ; Science & Technology ; Scientific apparatus & instruments ; Sensitivity ; Spectra ; Spectral resolution ; Spectrum analysis ; Technology ; Vapor phases</subject><ispartof>Review of scientific instruments, 2020-11, Vol.91 (11), p.113104-113104, Article 113104</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000587021200001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c360t-2aa361527568e5591ccf79db9ac49c2da0f8967063934ff746f7e25179c83fa43</citedby><cites>FETCH-LOGICAL-c360t-2aa361527568e5591ccf79db9ac49c2da0f8967063934ff746f7e25179c83fa43</cites><orcidid>0000-0003-3326-8823 ; 0000-0001-5044-5137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/5.0016789$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,782,786,796,4514,27931,27932,28255,76392</link.rule.ids></links><search><creatorcontrib>Libert, A.</creatorcontrib><creatorcontrib>Urbain, X.</creatorcontrib><creatorcontrib>Fabre, B.</creatorcontrib><creatorcontrib>Daman, M.</creatorcontrib><creatorcontrib>Lauzin, C.</creatorcontrib><title>Design and characteristics of a cavity-enhanced Fourier-transform spectrometer based on a supercontinuum source</title><title>Review of scientific instruments</title><addtitle>REV SCI INSTRUM</addtitle><description>We report the in-house fabrication of a high-resolution Fourier-transform spectrometer (FTS) for the spectroscopy of molecules in the gas phase at resolutions down to 0.002 cm−1 working in the spectral range from 5880 cm−1 (1.7 μm) to 15 380 cm−1 (650 nm). The FTS employs a supercontinuum as a broadband light source and a He:Ne laser with a homemade frequency-stabilization scheme as the spatial reference for the sampling of the interferogram on a constant optical path difference (OPD) grid. The sampling of the two lasers is performed at constant time intervals, and the resampling process is performed at the software level. The resampling of the interferogram on a constant OPD grid relies on cubic approximations of the He:Ne interference pattern to determine its zero-crossings. The use of an invariant in the sampling process allows us to perform on-the-fly data treatment. Both the hardware aspect and the data processing are described with, in each case, an original approach. We also report the successful coupling of the FTS with a high finesse optical cavity with effective mirror reflectivities of 99.76%, allowing us to reach sensitivities down to 6.5 × 10−8 cm−1 with a root-mean-square accuracy of 0.0017 cm−1 on the position of the Doppler-broadened transitions with a mean transition width of 0.046 cm−1 for spectra recorded at a spectral resolution of 0.015 cm−1. The sensitivity of the instrument per spectral element, once normalized, represents the best sensitivity reported in the literature for Fourier-transform incoherent broadband cavity-enhanced absorption spectroscopy with a supercontinuum light source.</description><subject>Broadband</subject><subject>Coupling (molecular)</subject><subject>Data processing</subject><subject>Fourier transform spectrometers</subject><subject>Instruments & Instrumentation</subject><subject>Light sources</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Resampling</subject><subject>Sampling</subject><subject>Science & Technology</subject><subject>Scientific apparatus & instruments</subject><subject>Sensitivity</subject><subject>Spectra</subject><subject>Spectral resolution</subject><subject>Spectrum analysis</subject><subject>Technology</subject><subject>Vapor phases</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqN0U1rVTEQBuAgir1WF_6DgButnJrvj6VcWxUKbnR9yM2Z2JR7k2OSU-m_N5dTKiiIs8nmmWEmL0IvKTmnRPF38pwQqrSxj9CGEmMHrRh_jDaEcDEoLcwJelbrDeklKX2KTjhnigouNyh_gBq_J-zShP21K843KLG26CvOATvs3W1sdwOka5c8TPgyLyVCGVpxqYZcDrjO4FvJB-ideOdqR7kPxHWZoficWkzL0llv9PAcPQluX-HF_XuKvl1efN1-Gq6-fPy8fX81eK5IG5hzXFHJtFQGpLTU-6DttLPOC-vZ5EgwVul-vOUiBC1U0MAk1dYbHpzgp-j1Oncu-ccCtY2HWD3s9y5BXurIhFLMCsVUp6_-oDd91dS360rqXkYd1ZtV-ZJrLRDGucSDK3cjJeMxhVGO9yl0a1b7E3Y5VB-hf92DP6ZgNGGUHQOh29hcizlt85Jab337_61dn626w3XKA73N5fdG4zyFf-G_T_gFHdO1CA</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Libert, A.</creator><creator>Urbain, X.</creator><creator>Fabre, B.</creator><creator>Daman, M.</creator><creator>Lauzin, C.</creator><general>Amer Inst Physics</general><general>American Institute of Physics</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3326-8823</orcidid><orcidid>https://orcid.org/0000-0001-5044-5137</orcidid></search><sort><creationdate>20201101</creationdate><title>Design and characteristics of a cavity-enhanced Fourier-transform spectrometer based on a supercontinuum source</title><author>Libert, A. ; Urbain, X. ; Fabre, B. ; Daman, M. ; Lauzin, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-2aa361527568e5591ccf79db9ac49c2da0f8967063934ff746f7e25179c83fa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Broadband</topic><topic>Coupling (molecular)</topic><topic>Data processing</topic><topic>Fourier transform spectrometers</topic><topic>Instruments & Instrumentation</topic><topic>Light sources</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Resampling</topic><topic>Sampling</topic><topic>Science & Technology</topic><topic>Scientific apparatus & instruments</topic><topic>Sensitivity</topic><topic>Spectra</topic><topic>Spectral resolution</topic><topic>Spectrum analysis</topic><topic>Technology</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Libert, A.</creatorcontrib><creatorcontrib>Urbain, X.</creatorcontrib><creatorcontrib>Fabre, B.</creatorcontrib><creatorcontrib>Daman, M.</creatorcontrib><creatorcontrib>Lauzin, C.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Libert, A.</au><au>Urbain, X.</au><au>Fabre, B.</au><au>Daman, M.</au><au>Lauzin, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and characteristics of a cavity-enhanced Fourier-transform spectrometer based on a supercontinuum source</atitle><jtitle>Review of scientific instruments</jtitle><stitle>REV SCI INSTRUM</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>91</volume><issue>11</issue><spage>113104</spage><epage>113104</epage><pages>113104-113104</pages><artnum>113104</artnum><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>We report the in-house fabrication of a high-resolution Fourier-transform spectrometer (FTS) for the spectroscopy of molecules in the gas phase at resolutions down to 0.002 cm−1 working in the spectral range from 5880 cm−1 (1.7 μm) to 15 380 cm−1 (650 nm). The FTS employs a supercontinuum as a broadband light source and a He:Ne laser with a homemade frequency-stabilization scheme as the spatial reference for the sampling of the interferogram on a constant optical path difference (OPD) grid. The sampling of the two lasers is performed at constant time intervals, and the resampling process is performed at the software level. The resampling of the interferogram on a constant OPD grid relies on cubic approximations of the He:Ne interference pattern to determine its zero-crossings. The use of an invariant in the sampling process allows us to perform on-the-fly data treatment. Both the hardware aspect and the data processing are described with, in each case, an original approach. We also report the successful coupling of the FTS with a high finesse optical cavity with effective mirror reflectivities of 99.76%, allowing us to reach sensitivities down to 6.5 × 10−8 cm−1 with a root-mean-square accuracy of 0.0017 cm−1 on the position of the Doppler-broadened transitions with a mean transition width of 0.046 cm−1 for spectra recorded at a spectral resolution of 0.015 cm−1. The sensitivity of the instrument per spectral element, once normalized, represents the best sensitivity reported in the literature for Fourier-transform incoherent broadband cavity-enhanced absorption spectroscopy with a supercontinuum light source.</abstract><cop>MELVILLE</cop><pub>Amer Inst Physics</pub><pmid>33261435</pmid><doi>10.1063/5.0016789</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-3326-8823</orcidid><orcidid>https://orcid.org/0000-0001-5044-5137</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2020-11, Vol.91 (11), p.113104-113104, Article 113104 |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0016789 |
source | AIP Journals Complete; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection |
subjects | Broadband Coupling (molecular) Data processing Fourier transform spectrometers Instruments & Instrumentation Light sources Physical Sciences Physics Physics, Applied Resampling Sampling Science & Technology Scientific apparatus & instruments Sensitivity Spectra Spectral resolution Spectrum analysis Technology Vapor phases |
title | Design and characteristics of a cavity-enhanced Fourier-transform spectrometer based on a supercontinuum source |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T06%3A46%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20characteristics%20of%20a%20cavity-enhanced%20Fourier-transform%20spectrometer%20based%20on%20a%20supercontinuum%20source&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Libert,%20A.&rft.date=2020-11-01&rft.volume=91&rft.issue=11&rft.spage=113104&rft.epage=113104&rft.pages=113104-113104&rft.artnum=113104&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/5.0016789&rft_dat=%3Cproquest_scita%3E2457777866%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457777866&rft_id=info:pmid/33261435&rfr_iscdi=true |