Design and characteristics of a cavity-enhanced Fourier-transform spectrometer based on a supercontinuum source

We report the in-house fabrication of a high-resolution Fourier-transform spectrometer (FTS) for the spectroscopy of molecules in the gas phase at resolutions down to 0.002 cm−1 working in the spectral range from 5880 cm−1 (1.7 μm) to 15 380 cm−1 (650 nm). The FTS employs a supercontinuum as a broad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2020-11, Vol.91 (11), p.113104-113104, Article 113104
Hauptverfasser: Libert, A., Urbain, X., Fabre, B., Daman, M., Lauzin, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113104
container_issue 11
container_start_page 113104
container_title Review of scientific instruments
container_volume 91
creator Libert, A.
Urbain, X.
Fabre, B.
Daman, M.
Lauzin, C.
description We report the in-house fabrication of a high-resolution Fourier-transform spectrometer (FTS) for the spectroscopy of molecules in the gas phase at resolutions down to 0.002 cm−1 working in the spectral range from 5880 cm−1 (1.7 μm) to 15 380 cm−1 (650 nm). The FTS employs a supercontinuum as a broadband light source and a He:Ne laser with a homemade frequency-stabilization scheme as the spatial reference for the sampling of the interferogram on a constant optical path difference (OPD) grid. The sampling of the two lasers is performed at constant time intervals, and the resampling process is performed at the software level. The resampling of the interferogram on a constant OPD grid relies on cubic approximations of the He:Ne interference pattern to determine its zero-crossings. The use of an invariant in the sampling process allows us to perform on-the-fly data treatment. Both the hardware aspect and the data processing are described with, in each case, an original approach. We also report the successful coupling of the FTS with a high finesse optical cavity with effective mirror reflectivities of 99.76%, allowing us to reach sensitivities down to 6.5 × 10−8 cm−1 with a root-mean-square accuracy of 0.0017 cm−1 on the position of the Doppler-broadened transitions with a mean transition width of 0.046 cm−1 for spectra recorded at a spectral resolution of 0.015 cm−1. The sensitivity of the instrument per spectral element, once normalized, represents the best sensitivity reported in the literature for Fourier-transform incoherent broadband cavity-enhanced absorption spectroscopy with a supercontinuum light source.
doi_str_mv 10.1063/5.0016789
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0016789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457777866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-2aa361527568e5591ccf79db9ac49c2da0f8967063934ff746f7e25179c83fa43</originalsourceid><addsrcrecordid>eNqN0U1rVTEQBuAgir1WF_6DgButnJrvj6VcWxUKbnR9yM2Z2JR7k2OSU-m_N5dTKiiIs8nmmWEmL0IvKTmnRPF38pwQqrSxj9CGEmMHrRh_jDaEcDEoLcwJelbrDeklKX2KTjhnigouNyh_gBq_J-zShP21K843KLG26CvOATvs3W1sdwOka5c8TPgyLyVCGVpxqYZcDrjO4FvJB-ideOdqR7kPxHWZoficWkzL0llv9PAcPQluX-HF_XuKvl1efN1-Gq6-fPy8fX81eK5IG5hzXFHJtFQGpLTU-6DttLPOC-vZ5EgwVul-vOUiBC1U0MAk1dYbHpzgp-j1Oncu-ccCtY2HWD3s9y5BXurIhFLMCsVUp6_-oDd91dS360rqXkYd1ZtV-ZJrLRDGucSDK3cjJeMxhVGO9yl0a1b7E3Y5VB-hf92DP6ZgNGGUHQOh29hcizlt85Jab337_61dn626w3XKA73N5fdG4zyFf-G_T_gFHdO1CA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457777866</pqid></control><display><type>article</type><title>Design and characteristics of a cavity-enhanced Fourier-transform spectrometer based on a supercontinuum source</title><source>AIP Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Libert, A. ; Urbain, X. ; Fabre, B. ; Daman, M. ; Lauzin, C.</creator><creatorcontrib>Libert, A. ; Urbain, X. ; Fabre, B. ; Daman, M. ; Lauzin, C.</creatorcontrib><description>We report the in-house fabrication of a high-resolution Fourier-transform spectrometer (FTS) for the spectroscopy of molecules in the gas phase at resolutions down to 0.002 cm−1 working in the spectral range from 5880 cm−1 (1.7 μm) to 15 380 cm−1 (650 nm). The FTS employs a supercontinuum as a broadband light source and a He:Ne laser with a homemade frequency-stabilization scheme as the spatial reference for the sampling of the interferogram on a constant optical path difference (OPD) grid. The sampling of the two lasers is performed at constant time intervals, and the resampling process is performed at the software level. The resampling of the interferogram on a constant OPD grid relies on cubic approximations of the He:Ne interference pattern to determine its zero-crossings. The use of an invariant in the sampling process allows us to perform on-the-fly data treatment. Both the hardware aspect and the data processing are described with, in each case, an original approach. We also report the successful coupling of the FTS with a high finesse optical cavity with effective mirror reflectivities of 99.76%, allowing us to reach sensitivities down to 6.5 × 10−8 cm−1 with a root-mean-square accuracy of 0.0017 cm−1 on the position of the Doppler-broadened transitions with a mean transition width of 0.046 cm−1 for spectra recorded at a spectral resolution of 0.015 cm−1. The sensitivity of the instrument per spectral element, once normalized, represents the best sensitivity reported in the literature for Fourier-transform incoherent broadband cavity-enhanced absorption spectroscopy with a supercontinuum light source.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/5.0016789</identifier><identifier>PMID: 33261435</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>MELVILLE: Amer Inst Physics</publisher><subject>Broadband ; Coupling (molecular) ; Data processing ; Fourier transform spectrometers ; Instruments &amp; Instrumentation ; Light sources ; Physical Sciences ; Physics ; Physics, Applied ; Resampling ; Sampling ; Science &amp; Technology ; Scientific apparatus &amp; instruments ; Sensitivity ; Spectra ; Spectral resolution ; Spectrum analysis ; Technology ; Vapor phases</subject><ispartof>Review of scientific instruments, 2020-11, Vol.91 (11), p.113104-113104, Article 113104</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000587021200001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c360t-2aa361527568e5591ccf79db9ac49c2da0f8967063934ff746f7e25179c83fa43</citedby><cites>FETCH-LOGICAL-c360t-2aa361527568e5591ccf79db9ac49c2da0f8967063934ff746f7e25179c83fa43</cites><orcidid>0000-0003-3326-8823 ; 0000-0001-5044-5137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/5.0016789$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,782,786,796,4514,27931,27932,28255,76392</link.rule.ids></links><search><creatorcontrib>Libert, A.</creatorcontrib><creatorcontrib>Urbain, X.</creatorcontrib><creatorcontrib>Fabre, B.</creatorcontrib><creatorcontrib>Daman, M.</creatorcontrib><creatorcontrib>Lauzin, C.</creatorcontrib><title>Design and characteristics of a cavity-enhanced Fourier-transform spectrometer based on a supercontinuum source</title><title>Review of scientific instruments</title><addtitle>REV SCI INSTRUM</addtitle><description>We report the in-house fabrication of a high-resolution Fourier-transform spectrometer (FTS) for the spectroscopy of molecules in the gas phase at resolutions down to 0.002 cm−1 working in the spectral range from 5880 cm−1 (1.7 μm) to 15 380 cm−1 (650 nm). The FTS employs a supercontinuum as a broadband light source and a He:Ne laser with a homemade frequency-stabilization scheme as the spatial reference for the sampling of the interferogram on a constant optical path difference (OPD) grid. The sampling of the two lasers is performed at constant time intervals, and the resampling process is performed at the software level. The resampling of the interferogram on a constant OPD grid relies on cubic approximations of the He:Ne interference pattern to determine its zero-crossings. The use of an invariant in the sampling process allows us to perform on-the-fly data treatment. Both the hardware aspect and the data processing are described with, in each case, an original approach. We also report the successful coupling of the FTS with a high finesse optical cavity with effective mirror reflectivities of 99.76%, allowing us to reach sensitivities down to 6.5 × 10−8 cm−1 with a root-mean-square accuracy of 0.0017 cm−1 on the position of the Doppler-broadened transitions with a mean transition width of 0.046 cm−1 for spectra recorded at a spectral resolution of 0.015 cm−1. The sensitivity of the instrument per spectral element, once normalized, represents the best sensitivity reported in the literature for Fourier-transform incoherent broadband cavity-enhanced absorption spectroscopy with a supercontinuum light source.</description><subject>Broadband</subject><subject>Coupling (molecular)</subject><subject>Data processing</subject><subject>Fourier transform spectrometers</subject><subject>Instruments &amp; Instrumentation</subject><subject>Light sources</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Resampling</subject><subject>Sampling</subject><subject>Science &amp; Technology</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Sensitivity</subject><subject>Spectra</subject><subject>Spectral resolution</subject><subject>Spectrum analysis</subject><subject>Technology</subject><subject>Vapor phases</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqN0U1rVTEQBuAgir1WF_6DgButnJrvj6VcWxUKbnR9yM2Z2JR7k2OSU-m_N5dTKiiIs8nmmWEmL0IvKTmnRPF38pwQqrSxj9CGEmMHrRh_jDaEcDEoLcwJelbrDeklKX2KTjhnigouNyh_gBq_J-zShP21K843KLG26CvOATvs3W1sdwOka5c8TPgyLyVCGVpxqYZcDrjO4FvJB-ideOdqR7kPxHWZoficWkzL0llv9PAcPQluX-HF_XuKvl1efN1-Gq6-fPy8fX81eK5IG5hzXFHJtFQGpLTU-6DttLPOC-vZ5EgwVul-vOUiBC1U0MAk1dYbHpzgp-j1Oncu-ccCtY2HWD3s9y5BXurIhFLMCsVUp6_-oDd91dS360rqXkYd1ZtV-ZJrLRDGucSDK3cjJeMxhVGO9yl0a1b7E3Y5VB-hf92DP6ZgNGGUHQOh29hcizlt85Jab337_61dn626w3XKA73N5fdG4zyFf-G_T_gFHdO1CA</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Libert, A.</creator><creator>Urbain, X.</creator><creator>Fabre, B.</creator><creator>Daman, M.</creator><creator>Lauzin, C.</creator><general>Amer Inst Physics</general><general>American Institute of Physics</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3326-8823</orcidid><orcidid>https://orcid.org/0000-0001-5044-5137</orcidid></search><sort><creationdate>20201101</creationdate><title>Design and characteristics of a cavity-enhanced Fourier-transform spectrometer based on a supercontinuum source</title><author>Libert, A. ; Urbain, X. ; Fabre, B. ; Daman, M. ; Lauzin, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-2aa361527568e5591ccf79db9ac49c2da0f8967063934ff746f7e25179c83fa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Broadband</topic><topic>Coupling (molecular)</topic><topic>Data processing</topic><topic>Fourier transform spectrometers</topic><topic>Instruments &amp; Instrumentation</topic><topic>Light sources</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Resampling</topic><topic>Sampling</topic><topic>Science &amp; Technology</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Sensitivity</topic><topic>Spectra</topic><topic>Spectral resolution</topic><topic>Spectrum analysis</topic><topic>Technology</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Libert, A.</creatorcontrib><creatorcontrib>Urbain, X.</creatorcontrib><creatorcontrib>Fabre, B.</creatorcontrib><creatorcontrib>Daman, M.</creatorcontrib><creatorcontrib>Lauzin, C.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Libert, A.</au><au>Urbain, X.</au><au>Fabre, B.</au><au>Daman, M.</au><au>Lauzin, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and characteristics of a cavity-enhanced Fourier-transform spectrometer based on a supercontinuum source</atitle><jtitle>Review of scientific instruments</jtitle><stitle>REV SCI INSTRUM</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>91</volume><issue>11</issue><spage>113104</spage><epage>113104</epage><pages>113104-113104</pages><artnum>113104</artnum><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>We report the in-house fabrication of a high-resolution Fourier-transform spectrometer (FTS) for the spectroscopy of molecules in the gas phase at resolutions down to 0.002 cm−1 working in the spectral range from 5880 cm−1 (1.7 μm) to 15 380 cm−1 (650 nm). The FTS employs a supercontinuum as a broadband light source and a He:Ne laser with a homemade frequency-stabilization scheme as the spatial reference for the sampling of the interferogram on a constant optical path difference (OPD) grid. The sampling of the two lasers is performed at constant time intervals, and the resampling process is performed at the software level. The resampling of the interferogram on a constant OPD grid relies on cubic approximations of the He:Ne interference pattern to determine its zero-crossings. The use of an invariant in the sampling process allows us to perform on-the-fly data treatment. Both the hardware aspect and the data processing are described with, in each case, an original approach. We also report the successful coupling of the FTS with a high finesse optical cavity with effective mirror reflectivities of 99.76%, allowing us to reach sensitivities down to 6.5 × 10−8 cm−1 with a root-mean-square accuracy of 0.0017 cm−1 on the position of the Doppler-broadened transitions with a mean transition width of 0.046 cm−1 for spectra recorded at a spectral resolution of 0.015 cm−1. The sensitivity of the instrument per spectral element, once normalized, represents the best sensitivity reported in the literature for Fourier-transform incoherent broadband cavity-enhanced absorption spectroscopy with a supercontinuum light source.</abstract><cop>MELVILLE</cop><pub>Amer Inst Physics</pub><pmid>33261435</pmid><doi>10.1063/5.0016789</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-3326-8823</orcidid><orcidid>https://orcid.org/0000-0001-5044-5137</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2020-11, Vol.91 (11), p.113104-113104, Article 113104
issn 0034-6748
1089-7623
language eng
recordid cdi_scitation_primary_10_1063_5_0016789
source AIP Journals Complete; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects Broadband
Coupling (molecular)
Data processing
Fourier transform spectrometers
Instruments & Instrumentation
Light sources
Physical Sciences
Physics
Physics, Applied
Resampling
Sampling
Science & Technology
Scientific apparatus & instruments
Sensitivity
Spectra
Spectral resolution
Spectrum analysis
Technology
Vapor phases
title Design and characteristics of a cavity-enhanced Fourier-transform spectrometer based on a supercontinuum source
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T06%3A46%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20characteristics%20of%20a%20cavity-enhanced%20Fourier-transform%20spectrometer%20based%20on%20a%20supercontinuum%20source&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Libert,%20A.&rft.date=2020-11-01&rft.volume=91&rft.issue=11&rft.spage=113104&rft.epage=113104&rft.pages=113104-113104&rft.artnum=113104&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/5.0016789&rft_dat=%3Cproquest_scita%3E2457777866%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457777866&rft_id=info:pmid/33261435&rfr_iscdi=true