Sensitivity and dimensionality of atomic environment representations used for machine learning interatomic potentials
Faithfully representing chemical environments is essential for describing materials and molecules with machine learning approaches. Here, we present a systematic classification of these representations and then investigate (i) the sensitivity to perturbations and (ii) the effective dimensionality of...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2020-10, Vol.153 (14), p.144106-144106 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 144106 |
---|---|
container_issue | 14 |
container_start_page | 144106 |
container_title | The Journal of chemical physics |
container_volume | 153 |
creator | Onat, Berk Ortner, Christoph Kermode, James R. |
description | Faithfully representing chemical environments is essential for describing materials and molecules with machine learning approaches. Here, we present a systematic classification of these representations and then investigate (i) the sensitivity to perturbations and (ii) the effective dimensionality of a variety of atomic environment representations and over a range of material datasets. Representations investigated include atom centered symmetry functions, Chebyshev Polynomial Symmetry Functions (CHSF), smooth overlap of atomic positions, many-body tensor representation, and atomic cluster expansion. In area (i), we show that none of the atomic environment representations are linearly stable under tangential perturbations and that for CHSF, there are instabilities for particular choices of perturbation, which we show can be removed with a slight redefinition of the representation. In area (ii), we find that most representations can be compressed significantly without loss of precision and, further, that selecting optimal subsets of a representation method improves the accuracy of regression models built for a given dataset. |
doi_str_mv | 10.1063/5.0016005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0016005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450664880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-88a9df2315925e8f1598fa9747c2256b14e6bc5d3e6261a07994143d018600743</originalsourceid><addsrcrecordid>eNp90U1LxDAQBuAgCq6rB_9BwIsKXSdpkyZHWfwCwYN6Ltk21SxtUpN0Yf-9WXdRUPA0YebJe5hB6JTAjADPr9gMgHAAtocmBITMSi5hH00AKMkkB36IjkJYQlIlLSZofNY2mGhWJq6xsg1uTL_pOKu6Tcu1WEXXmxpruzLe2TSN2OvB65BeKiYZ8Bh0g1vnca_qd2M17rTy1tg3bGzUfpcwuJi-GNWFY3TQpqJPdnWKXm9vXub32ePT3cP8-jGrc8liJoSSTUtzwiRlWrSpilbJsihrShlfkELzRc2aXHPKiYJSyoIUeQNEpBWURT5F59vcwbuPUYdY9SbUuuuU1W4MFS1YzoWghCZ69osu3ejTFr4UcF4IAUldbFXtXQhet9XgTa_8uiJQbQ5QsWp3gGQvtzbUZruob7xy_gdWQ9P-h_8mfwIKI5Tn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450664880</pqid></control><display><type>article</type><title>Sensitivity and dimensionality of atomic environment representations used for machine learning interatomic potentials</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Onat, Berk ; Ortner, Christoph ; Kermode, James R.</creator><creatorcontrib>Onat, Berk ; Ortner, Christoph ; Kermode, James R.</creatorcontrib><description>Faithfully representing chemical environments is essential for describing materials and molecules with machine learning approaches. Here, we present a systematic classification of these representations and then investigate (i) the sensitivity to perturbations and (ii) the effective dimensionality of a variety of atomic environment representations and over a range of material datasets. Representations investigated include atom centered symmetry functions, Chebyshev Polynomial Symmetry Functions (CHSF), smooth overlap of atomic positions, many-body tensor representation, and atomic cluster expansion. In area (i), we show that none of the atomic environment representations are linearly stable under tangential perturbations and that for CHSF, there are instabilities for particular choices of perturbation, which we show can be removed with a slight redefinition of the representation. In area (ii), we find that most representations can be compressed significantly without loss of precision and, further, that selecting optimal subsets of a representation method improves the accuracy of regression models built for a given dataset.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0016005</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Chebyshev approximation ; Datasets ; Functions (mathematics) ; Machine learning ; Model accuracy ; Perturbation ; Polynomials ; Regression models ; Representations ; Sensitivity ; Symmetry ; Tensors</subject><ispartof>The Journal of chemical physics, 2020-10, Vol.153 (14), p.144106-144106</ispartof><rights>Author(s)</rights><rights>2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-88a9df2315925e8f1598fa9747c2256b14e6bc5d3e6261a07994143d018600743</citedby><cites>FETCH-LOGICAL-c395t-88a9df2315925e8f1598fa9747c2256b14e6bc5d3e6261a07994143d018600743</cites><orcidid>0000-0001-6755-6271 ; 0000-0002-5580-1978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0016005$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Onat, Berk</creatorcontrib><creatorcontrib>Ortner, Christoph</creatorcontrib><creatorcontrib>Kermode, James R.</creatorcontrib><title>Sensitivity and dimensionality of atomic environment representations used for machine learning interatomic potentials</title><title>The Journal of chemical physics</title><description>Faithfully representing chemical environments is essential for describing materials and molecules with machine learning approaches. Here, we present a systematic classification of these representations and then investigate (i) the sensitivity to perturbations and (ii) the effective dimensionality of a variety of atomic environment representations and over a range of material datasets. Representations investigated include atom centered symmetry functions, Chebyshev Polynomial Symmetry Functions (CHSF), smooth overlap of atomic positions, many-body tensor representation, and atomic cluster expansion. In area (i), we show that none of the atomic environment representations are linearly stable under tangential perturbations and that for CHSF, there are instabilities for particular choices of perturbation, which we show can be removed with a slight redefinition of the representation. In area (ii), we find that most representations can be compressed significantly without loss of precision and, further, that selecting optimal subsets of a representation method improves the accuracy of regression models built for a given dataset.</description><subject>Chebyshev approximation</subject><subject>Datasets</subject><subject>Functions (mathematics)</subject><subject>Machine learning</subject><subject>Model accuracy</subject><subject>Perturbation</subject><subject>Polynomials</subject><subject>Regression models</subject><subject>Representations</subject><subject>Sensitivity</subject><subject>Symmetry</subject><subject>Tensors</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90U1LxDAQBuAgCq6rB_9BwIsKXSdpkyZHWfwCwYN6Ltk21SxtUpN0Yf-9WXdRUPA0YebJe5hB6JTAjADPr9gMgHAAtocmBITMSi5hH00AKMkkB36IjkJYQlIlLSZofNY2mGhWJq6xsg1uTL_pOKu6Tcu1WEXXmxpruzLe2TSN2OvB65BeKiYZ8Bh0g1vnca_qd2M17rTy1tg3bGzUfpcwuJi-GNWFY3TQpqJPdnWKXm9vXub32ePT3cP8-jGrc8liJoSSTUtzwiRlWrSpilbJsihrShlfkELzRc2aXHPKiYJSyoIUeQNEpBWURT5F59vcwbuPUYdY9SbUuuuU1W4MFS1YzoWghCZ69osu3ejTFr4UcF4IAUldbFXtXQhet9XgTa_8uiJQbQ5QsWp3gGQvtzbUZruob7xy_gdWQ9P-h_8mfwIKI5Tn</recordid><startdate>20201014</startdate><enddate>20201014</enddate><creator>Onat, Berk</creator><creator>Ortner, Christoph</creator><creator>Kermode, James R.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6755-6271</orcidid><orcidid>https://orcid.org/0000-0002-5580-1978</orcidid></search><sort><creationdate>20201014</creationdate><title>Sensitivity and dimensionality of atomic environment representations used for machine learning interatomic potentials</title><author>Onat, Berk ; Ortner, Christoph ; Kermode, James R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-88a9df2315925e8f1598fa9747c2256b14e6bc5d3e6261a07994143d018600743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chebyshev approximation</topic><topic>Datasets</topic><topic>Functions (mathematics)</topic><topic>Machine learning</topic><topic>Model accuracy</topic><topic>Perturbation</topic><topic>Polynomials</topic><topic>Regression models</topic><topic>Representations</topic><topic>Sensitivity</topic><topic>Symmetry</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Onat, Berk</creatorcontrib><creatorcontrib>Ortner, Christoph</creatorcontrib><creatorcontrib>Kermode, James R.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Onat, Berk</au><au>Ortner, Christoph</au><au>Kermode, James R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitivity and dimensionality of atomic environment representations used for machine learning interatomic potentials</atitle><jtitle>The Journal of chemical physics</jtitle><date>2020-10-14</date><risdate>2020</risdate><volume>153</volume><issue>14</issue><spage>144106</spage><epage>144106</epage><pages>144106-144106</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Faithfully representing chemical environments is essential for describing materials and molecules with machine learning approaches. Here, we present a systematic classification of these representations and then investigate (i) the sensitivity to perturbations and (ii) the effective dimensionality of a variety of atomic environment representations and over a range of material datasets. Representations investigated include atom centered symmetry functions, Chebyshev Polynomial Symmetry Functions (CHSF), smooth overlap of atomic positions, many-body tensor representation, and atomic cluster expansion. In area (i), we show that none of the atomic environment representations are linearly stable under tangential perturbations and that for CHSF, there are instabilities for particular choices of perturbation, which we show can be removed with a slight redefinition of the representation. In area (ii), we find that most representations can be compressed significantly without loss of precision and, further, that selecting optimal subsets of a representation method improves the accuracy of regression models built for a given dataset.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0016005</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-6755-6271</orcidid><orcidid>https://orcid.org/0000-0002-5580-1978</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2020-10, Vol.153 (14), p.144106-144106 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0016005 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Chebyshev approximation Datasets Functions (mathematics) Machine learning Model accuracy Perturbation Polynomials Regression models Representations Sensitivity Symmetry Tensors |
title | Sensitivity and dimensionality of atomic environment representations used for machine learning interatomic potentials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A17%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitivity%20and%20dimensionality%20of%20atomic%20environment%20representations%20used%20for%20machine%20learning%20interatomic%20potentials&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Onat,%20Berk&rft.date=2020-10-14&rft.volume=153&rft.issue=14&rft.spage=144106&rft.epage=144106&rft.pages=144106-144106&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0016005&rft_dat=%3Cproquest_scita%3E2450664880%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450664880&rft_id=info:pmid/&rfr_iscdi=true |