Chalcogen-hyperdoped germanium for short-wavelength infrared photodetection

Obtaining short-wavelength-infrared (SWIR; 1.4 μm–3.0 μm) room-temperature photodetection in a low-cost, group IV semiconductor is desirable for numerous applications. We demonstrate a non-equilibrium method for hyperdoping germanium with selenium or tellurium for dopant-mediated SWIR photodetection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2020-07, Vol.10 (7), p.075028-075028-6
Hauptverfasser: Gandhi, Hemi H., Pastor, David, Tran, Tuan T., Kalchmair, Stefan, Smillie, Lachlan A., Mailoa, Jonathan P., Milazzo, Ruggero, Napolitani, Enrico, Loncar, Marko, Williams, James S., Aziz, Michael J., Mazur, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 075028-6
container_issue 7
container_start_page 075028
container_title AIP advances
container_volume 10
creator Gandhi, Hemi H.
Pastor, David
Tran, Tuan T.
Kalchmair, Stefan
Smillie, Lachlan A.
Mailoa, Jonathan P.
Milazzo, Ruggero
Napolitani, Enrico
Loncar, Marko
Williams, James S.
Aziz, Michael J.
Mazur, Eric
description Obtaining short-wavelength-infrared (SWIR; 1.4 μm–3.0 μm) room-temperature photodetection in a low-cost, group IV semiconductor is desirable for numerous applications. We demonstrate a non-equilibrium method for hyperdoping germanium with selenium or tellurium for dopant-mediated SWIR photodetection. By ion-implanting Se or Te into Ge wafers and restoring crystallinity with pulsed laser melting induced rapid solidification, we obtain single crystalline materials with peak Se and Te concentrations of 1020 cm−3 (104 times the solubility limits). These hyperdoped materials exhibit sub-bandgap absorption of light up to wavelengths of at least 3.0 μm, with their sub-bandgap optical absorption coefficients comparable to those of commercial SWIR photodetection materials. Although previous studies of Ge-based photodetectors have reported a sub-bandgap optoelectronic response only at low temperature, we report room-temperature sub-bandgap SWIR photodetection at wavelengths as long as 3.0 μm from rudimentary hyperdoped Ge:Se and Ge:Te photodetectors.
doi_str_mv 10.1063/5.0008281
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0008281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fa3be7a8a9254ba99d46f6ff635d8021</doaj_id><sourcerecordid>2428667255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-adb33dc17fbeffb398f8857b9bd12ccb2c3e0d3d1764fb8b8d49da3741ff48943</originalsourceid><addsrcrecordid>eNqd0ctLwzAcwPEiCo65g__BwJNiZ95Nj2O-hgMv6jXkuXZsTU3Tjf33dg98XD0lhA9fkvyS5BKCEQQM39ERAIAjDk-SHoKUpxghdvprf54MmmbRIUByCDjpJS-TQi61n9sqLba1DcbX1gznNqxkVbarofNh2BQ-xHQj13Zpq3kshmXlggydqwsfvbHR6lj66iI5c3LZ2MFx7Sfvjw9vk-d09vo0nYxnqSaMxlQahbHRMHPKOqdwzh3nNFO5MhBprZDGFhhsYMaIU1xxQ3IjcUagc4TnBPeT6aFrvFyIOpQrGbbCy1LsD3yYCxliqZdWOImVzSSXOaJEyTw3hDnmHMPUcIBg17o9tJqNrVv1p3Zffoz3tbYVBAEOecevDrwO_rO1TRQL34aqe61ABHHGMkRpp64PSgffNMG67ywEYjcpQcVxUp29OV5Al1HuvvF_eO3DDxS1cfgLY6qisg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2428667255</pqid></control><display><type>article</type><title>Chalcogen-hyperdoped germanium for short-wavelength infrared photodetection</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>SWEPUB Freely available online</source><source>Free Full-Text Journals in Chemistry</source><creator>Gandhi, Hemi H. ; Pastor, David ; Tran, Tuan T. ; Kalchmair, Stefan ; Smillie, Lachlan A. ; Mailoa, Jonathan P. ; Milazzo, Ruggero ; Napolitani, Enrico ; Loncar, Marko ; Williams, James S. ; Aziz, Michael J. ; Mazur, Eric</creator><creatorcontrib>Gandhi, Hemi H. ; Pastor, David ; Tran, Tuan T. ; Kalchmair, Stefan ; Smillie, Lachlan A. ; Mailoa, Jonathan P. ; Milazzo, Ruggero ; Napolitani, Enrico ; Loncar, Marko ; Williams, James S. ; Aziz, Michael J. ; Mazur, Eric</creatorcontrib><description>Obtaining short-wavelength-infrared (SWIR; 1.4 μm–3.0 μm) room-temperature photodetection in a low-cost, group IV semiconductor is desirable for numerous applications. We demonstrate a non-equilibrium method for hyperdoping germanium with selenium or tellurium for dopant-mediated SWIR photodetection. By ion-implanting Se or Te into Ge wafers and restoring crystallinity with pulsed laser melting induced rapid solidification, we obtain single crystalline materials with peak Se and Te concentrations of 1020 cm−3 (104 times the solubility limits). These hyperdoped materials exhibit sub-bandgap absorption of light up to wavelengths of at least 3.0 μm, with their sub-bandgap optical absorption coefficients comparable to those of commercial SWIR photodetection materials. Although previous studies of Ge-based photodetectors have reported a sub-bandgap optoelectronic response only at low temperature, we report room-temperature sub-bandgap SWIR photodetection at wavelengths as long as 3.0 μm from rudimentary hyperdoped Ge:Se and Ge:Te photodetectors.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0008281</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Absorptivity ; Crystal structure ; Crystallinity ; Electromagnetic absorption ; Energy gap ; Germanium ; Laser beam melting ; Low temperature ; Optoelectronics ; Photometers ; Pulsed lasers ; Rapid solidification ; Room temperature ; Selenium ; Tellurium ; Wavelengths</subject><ispartof>AIP advances, 2020-07, Vol.10 (7), p.075028-075028-6</ispartof><rights>Author(s)</rights><rights>2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-adb33dc17fbeffb398f8857b9bd12ccb2c3e0d3d1764fb8b8d49da3741ff48943</citedby><cites>FETCH-LOGICAL-c465t-adb33dc17fbeffb398f8857b9bd12ccb2c3e0d3d1764fb8b8d49da3741ff48943</cites><orcidid>0000-0003-2239-6192 ; 0000-0002-2562-8860 ; 0000-0002-8607-8559 ; 0000-0001-8634-1452 ; 0000-0003-2975-3973 ; 0000-0002-7586-3797 ; 0000-0001-9657-9456 ; 0000-0001-7542-9352</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,550,776,780,860,881,2095,27903,27904</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-420818$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Gandhi, Hemi H.</creatorcontrib><creatorcontrib>Pastor, David</creatorcontrib><creatorcontrib>Tran, Tuan T.</creatorcontrib><creatorcontrib>Kalchmair, Stefan</creatorcontrib><creatorcontrib>Smillie, Lachlan A.</creatorcontrib><creatorcontrib>Mailoa, Jonathan P.</creatorcontrib><creatorcontrib>Milazzo, Ruggero</creatorcontrib><creatorcontrib>Napolitani, Enrico</creatorcontrib><creatorcontrib>Loncar, Marko</creatorcontrib><creatorcontrib>Williams, James S.</creatorcontrib><creatorcontrib>Aziz, Michael J.</creatorcontrib><creatorcontrib>Mazur, Eric</creatorcontrib><title>Chalcogen-hyperdoped germanium for short-wavelength infrared photodetection</title><title>AIP advances</title><description>Obtaining short-wavelength-infrared (SWIR; 1.4 μm–3.0 μm) room-temperature photodetection in a low-cost, group IV semiconductor is desirable for numerous applications. We demonstrate a non-equilibrium method for hyperdoping germanium with selenium or tellurium for dopant-mediated SWIR photodetection. By ion-implanting Se or Te into Ge wafers and restoring crystallinity with pulsed laser melting induced rapid solidification, we obtain single crystalline materials with peak Se and Te concentrations of 1020 cm−3 (104 times the solubility limits). These hyperdoped materials exhibit sub-bandgap absorption of light up to wavelengths of at least 3.0 μm, with their sub-bandgap optical absorption coefficients comparable to those of commercial SWIR photodetection materials. Although previous studies of Ge-based photodetectors have reported a sub-bandgap optoelectronic response only at low temperature, we report room-temperature sub-bandgap SWIR photodetection at wavelengths as long as 3.0 μm from rudimentary hyperdoped Ge:Se and Ge:Te photodetectors.</description><subject>Absorptivity</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Electromagnetic absorption</subject><subject>Energy gap</subject><subject>Germanium</subject><subject>Laser beam melting</subject><subject>Low temperature</subject><subject>Optoelectronics</subject><subject>Photometers</subject><subject>Pulsed lasers</subject><subject>Rapid solidification</subject><subject>Room temperature</subject><subject>Selenium</subject><subject>Tellurium</subject><subject>Wavelengths</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNqd0ctLwzAcwPEiCo65g__BwJNiZ95Nj2O-hgMv6jXkuXZsTU3Tjf33dg98XD0lhA9fkvyS5BKCEQQM39ERAIAjDk-SHoKUpxghdvprf54MmmbRIUByCDjpJS-TQi61n9sqLba1DcbX1gznNqxkVbarofNh2BQ-xHQj13Zpq3kshmXlggydqwsfvbHR6lj66iI5c3LZ2MFx7Sfvjw9vk-d09vo0nYxnqSaMxlQahbHRMHPKOqdwzh3nNFO5MhBprZDGFhhsYMaIU1xxQ3IjcUagc4TnBPeT6aFrvFyIOpQrGbbCy1LsD3yYCxliqZdWOImVzSSXOaJEyTw3hDnmHMPUcIBg17o9tJqNrVv1p3Zffoz3tbYVBAEOecevDrwO_rO1TRQL34aqe61ABHHGMkRpp64PSgffNMG67ywEYjcpQcVxUp29OV5Al1HuvvF_eO3DDxS1cfgLY6qisg</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Gandhi, Hemi H.</creator><creator>Pastor, David</creator><creator>Tran, Tuan T.</creator><creator>Kalchmair, Stefan</creator><creator>Smillie, Lachlan A.</creator><creator>Mailoa, Jonathan P.</creator><creator>Milazzo, Ruggero</creator><creator>Napolitani, Enrico</creator><creator>Loncar, Marko</creator><creator>Williams, James S.</creator><creator>Aziz, Michael J.</creator><creator>Mazur, Eric</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2239-6192</orcidid><orcidid>https://orcid.org/0000-0002-2562-8860</orcidid><orcidid>https://orcid.org/0000-0002-8607-8559</orcidid><orcidid>https://orcid.org/0000-0001-8634-1452</orcidid><orcidid>https://orcid.org/0000-0003-2975-3973</orcidid><orcidid>https://orcid.org/0000-0002-7586-3797</orcidid><orcidid>https://orcid.org/0000-0001-9657-9456</orcidid><orcidid>https://orcid.org/0000-0001-7542-9352</orcidid></search><sort><creationdate>20200701</creationdate><title>Chalcogen-hyperdoped germanium for short-wavelength infrared photodetection</title><author>Gandhi, Hemi H. ; Pastor, David ; Tran, Tuan T. ; Kalchmair, Stefan ; Smillie, Lachlan A. ; Mailoa, Jonathan P. ; Milazzo, Ruggero ; Napolitani, Enrico ; Loncar, Marko ; Williams, James S. ; Aziz, Michael J. ; Mazur, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-adb33dc17fbeffb398f8857b9bd12ccb2c3e0d3d1764fb8b8d49da3741ff48943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorptivity</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Electromagnetic absorption</topic><topic>Energy gap</topic><topic>Germanium</topic><topic>Laser beam melting</topic><topic>Low temperature</topic><topic>Optoelectronics</topic><topic>Photometers</topic><topic>Pulsed lasers</topic><topic>Rapid solidification</topic><topic>Room temperature</topic><topic>Selenium</topic><topic>Tellurium</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gandhi, Hemi H.</creatorcontrib><creatorcontrib>Pastor, David</creatorcontrib><creatorcontrib>Tran, Tuan T.</creatorcontrib><creatorcontrib>Kalchmair, Stefan</creatorcontrib><creatorcontrib>Smillie, Lachlan A.</creatorcontrib><creatorcontrib>Mailoa, Jonathan P.</creatorcontrib><creatorcontrib>Milazzo, Ruggero</creatorcontrib><creatorcontrib>Napolitani, Enrico</creatorcontrib><creatorcontrib>Loncar, Marko</creatorcontrib><creatorcontrib>Williams, James S.</creatorcontrib><creatorcontrib>Aziz, Michael J.</creatorcontrib><creatorcontrib>Mazur, Eric</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gandhi, Hemi H.</au><au>Pastor, David</au><au>Tran, Tuan T.</au><au>Kalchmair, Stefan</au><au>Smillie, Lachlan A.</au><au>Mailoa, Jonathan P.</au><au>Milazzo, Ruggero</au><au>Napolitani, Enrico</au><au>Loncar, Marko</au><au>Williams, James S.</au><au>Aziz, Michael J.</au><au>Mazur, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chalcogen-hyperdoped germanium for short-wavelength infrared photodetection</atitle><jtitle>AIP advances</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>10</volume><issue>7</issue><spage>075028</spage><epage>075028-6</epage><pages>075028-075028-6</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Obtaining short-wavelength-infrared (SWIR; 1.4 μm–3.0 μm) room-temperature photodetection in a low-cost, group IV semiconductor is desirable for numerous applications. We demonstrate a non-equilibrium method for hyperdoping germanium with selenium or tellurium for dopant-mediated SWIR photodetection. By ion-implanting Se or Te into Ge wafers and restoring crystallinity with pulsed laser melting induced rapid solidification, we obtain single crystalline materials with peak Se and Te concentrations of 1020 cm−3 (104 times the solubility limits). These hyperdoped materials exhibit sub-bandgap absorption of light up to wavelengths of at least 3.0 μm, with their sub-bandgap optical absorption coefficients comparable to those of commercial SWIR photodetection materials. Although previous studies of Ge-based photodetectors have reported a sub-bandgap optoelectronic response only at low temperature, we report room-temperature sub-bandgap SWIR photodetection at wavelengths as long as 3.0 μm from rudimentary hyperdoped Ge:Se and Ge:Te photodetectors.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0008281</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2239-6192</orcidid><orcidid>https://orcid.org/0000-0002-2562-8860</orcidid><orcidid>https://orcid.org/0000-0002-8607-8559</orcidid><orcidid>https://orcid.org/0000-0001-8634-1452</orcidid><orcidid>https://orcid.org/0000-0003-2975-3973</orcidid><orcidid>https://orcid.org/0000-0002-7586-3797</orcidid><orcidid>https://orcid.org/0000-0001-9657-9456</orcidid><orcidid>https://orcid.org/0000-0001-7542-9352</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2020-07, Vol.10 (7), p.075028-075028-6
issn 2158-3226
2158-3226
language eng
recordid cdi_scitation_primary_10_1063_5_0008281
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; SWEPUB Freely available online; Free Full-Text Journals in Chemistry
subjects Absorptivity
Crystal structure
Crystallinity
Electromagnetic absorption
Energy gap
Germanium
Laser beam melting
Low temperature
Optoelectronics
Photometers
Pulsed lasers
Rapid solidification
Room temperature
Selenium
Tellurium
Wavelengths
title Chalcogen-hyperdoped germanium for short-wavelength infrared photodetection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A45%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chalcogen-hyperdoped%20germanium%20for%20short-wavelength%20infrared%20photodetection&rft.jtitle=AIP%20advances&rft.au=Gandhi,%20Hemi%20H.&rft.date=2020-07-01&rft.volume=10&rft.issue=7&rft.spage=075028&rft.epage=075028-6&rft.pages=075028-075028-6&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0008281&rft_dat=%3Cproquest_scita%3E2428667255%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2428667255&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_fa3be7a8a9254ba99d46f6ff635d8021&rfr_iscdi=true