Nano-scale water Poiseuille flow: MD computational experiment

Because viscosity plays an important role in physical fluid flow applications, this property must be described accurately in com- puter simulations. As a most popular Newtonian fluid on earth, water has a special role in scientific and technical applications. The simulation of water with molecular d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Maknickas, Algirdas, Skarbalius, Gediminas, Džiugys, Algis, Misiulis, Edgaras
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2239
creator Maknickas, Algirdas
Skarbalius, Gediminas
Džiugys, Algis
Misiulis, Edgaras
description Because viscosity plays an important role in physical fluid flow applications, this property must be described accurately in com- puter simulations. As a most popular Newtonian fluid on earth, water has a special role in scientific and technical applications. The simulation of water with molecular dynamics (MD) includes granular matter of long-range interacting H2O molecules, and simula- tions using discrete element method, as well as experimental studies of the dynamics of spheres with sub-millimetre radii, of such systems demonstrate non-Newtonian behaviour. Therefore, the flow of water molecules with complex shapes and long-range non- linear interactions in nano-scaled fluid devices—in contrast to macro-scaled devices—is also likely to demonstrate non-Newtonian behaviour. In this study, we used molecular dynamics simulations, with a temperature range of 273 K to 363 K, to study the SPC/E water Poiseuille flow inside a nanochannel consisting of two parallel silicon plates. The results indicate non-Newtonian behaviour of molecular water flow at nanoscales.
doi_str_mv 10.1063/5.0007798
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0007798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2405740746</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-bb65a98626196967c0c9253817b0e43e89809b1e35963d797ea502aa11781c2e3</originalsourceid><addsrcrecordid>eNotkEtLw0AUhQdRMFYX_oOAOyH13pnMS3AhrS-oj4WCu2ESbyElzcRMQvXfG0lXBw6Hw8fH2DnCHEGJKzkHAK2tOWAJSomZVqgOWQJg84zn4vOYncS4AeBWa5OwmxffhCyWvqZ053vq0rdQRRqqeizWddhdp8_LtAzbduh9X4XG1yn9tNRVW2r6U3a09nWks33O2Mf93fviMVu9PjwtbldZy9H0WVEo6a1RXKFVVukSSsulMKgLoFyQsQZsgSSkVeJLW01eAvceURssOYkZu5h-2y58DxR7twlDN7JEx3OQOgedq3F1Oa1iWU2wrh05fffrENy_HifdXo_4A-sRVQM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2405740746</pqid></control><display><type>conference_proceeding</type><title>Nano-scale water Poiseuille flow: MD computational experiment</title><source>AIP Journals Complete</source><creator>Maknickas, Algirdas ; Skarbalius, Gediminas ; Džiugys, Algis ; Misiulis, Edgaras</creator><contributor>Kozień, Marek ; Cecot, Witold ; Reczek, Wacław ; Nalepka, Kinga ; Lisowski, Wojciech ; Skoczeń, Błażej ; Pamin, Jerzy</contributor><creatorcontrib>Maknickas, Algirdas ; Skarbalius, Gediminas ; Džiugys, Algis ; Misiulis, Edgaras ; Kozień, Marek ; Cecot, Witold ; Reczek, Wacław ; Nalepka, Kinga ; Lisowski, Wojciech ; Skoczeń, Błażej ; Pamin, Jerzy</creatorcontrib><description>Because viscosity plays an important role in physical fluid flow applications, this property must be described accurately in com- puter simulations. As a most popular Newtonian fluid on earth, water has a special role in scientific and technical applications. The simulation of water with molecular dynamics (MD) includes granular matter of long-range interacting H2O molecules, and simula- tions using discrete element method, as well as experimental studies of the dynamics of spheres with sub-millimetre radii, of such systems demonstrate non-Newtonian behaviour. Therefore, the flow of water molecules with complex shapes and long-range non- linear interactions in nano-scaled fluid devices—in contrast to macro-scaled devices—is also likely to demonstrate non-Newtonian behaviour. In this study, we used molecular dynamics simulations, with a temperature range of 273 K to 363 K, to study the SPC/E water Poiseuille flow inside a nanochannel consisting of two parallel silicon plates. The results indicate non-Newtonian behaviour of molecular water flow at nanoscales.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0007798</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computational fluid dynamics ; Computer simulation ; Discrete element method ; Fluid flow ; Laminar flow ; Molecular dynamics ; Nanochannels ; Newtonian fluids ; Water chemistry ; Water flow</subject><ispartof>AIP conference proceedings, 2020, Vol.2239 (1)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0007798$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Kozień, Marek</contributor><contributor>Cecot, Witold</contributor><contributor>Reczek, Wacław</contributor><contributor>Nalepka, Kinga</contributor><contributor>Lisowski, Wojciech</contributor><contributor>Skoczeń, Błażej</contributor><contributor>Pamin, Jerzy</contributor><creatorcontrib>Maknickas, Algirdas</creatorcontrib><creatorcontrib>Skarbalius, Gediminas</creatorcontrib><creatorcontrib>Džiugys, Algis</creatorcontrib><creatorcontrib>Misiulis, Edgaras</creatorcontrib><title>Nano-scale water Poiseuille flow: MD computational experiment</title><title>AIP conference proceedings</title><description>Because viscosity plays an important role in physical fluid flow applications, this property must be described accurately in com- puter simulations. As a most popular Newtonian fluid on earth, water has a special role in scientific and technical applications. The simulation of water with molecular dynamics (MD) includes granular matter of long-range interacting H2O molecules, and simula- tions using discrete element method, as well as experimental studies of the dynamics of spheres with sub-millimetre radii, of such systems demonstrate non-Newtonian behaviour. Therefore, the flow of water molecules with complex shapes and long-range non- linear interactions in nano-scaled fluid devices—in contrast to macro-scaled devices—is also likely to demonstrate non-Newtonian behaviour. In this study, we used molecular dynamics simulations, with a temperature range of 273 K to 363 K, to study the SPC/E water Poiseuille flow inside a nanochannel consisting of two parallel silicon plates. The results indicate non-Newtonian behaviour of molecular water flow at nanoscales.</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Discrete element method</subject><subject>Fluid flow</subject><subject>Laminar flow</subject><subject>Molecular dynamics</subject><subject>Nanochannels</subject><subject>Newtonian fluids</subject><subject>Water chemistry</subject><subject>Water flow</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEtLw0AUhQdRMFYX_oOAOyH13pnMS3AhrS-oj4WCu2ESbyElzcRMQvXfG0lXBw6Hw8fH2DnCHEGJKzkHAK2tOWAJSomZVqgOWQJg84zn4vOYncS4AeBWa5OwmxffhCyWvqZ053vq0rdQRRqqeizWddhdp8_LtAzbduh9X4XG1yn9tNRVW2r6U3a09nWks33O2Mf93fviMVu9PjwtbldZy9H0WVEo6a1RXKFVVukSSsulMKgLoFyQsQZsgSSkVeJLW01eAvceURssOYkZu5h-2y58DxR7twlDN7JEx3OQOgedq3F1Oa1iWU2wrh05fffrENy_HifdXo_4A-sRVQM</recordid><startdate>20200522</startdate><enddate>20200522</enddate><creator>Maknickas, Algirdas</creator><creator>Skarbalius, Gediminas</creator><creator>Džiugys, Algis</creator><creator>Misiulis, Edgaras</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20200522</creationdate><title>Nano-scale water Poiseuille flow: MD computational experiment</title><author>Maknickas, Algirdas ; Skarbalius, Gediminas ; Džiugys, Algis ; Misiulis, Edgaras</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-bb65a98626196967c0c9253817b0e43e89809b1e35963d797ea502aa11781c2e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Discrete element method</topic><topic>Fluid flow</topic><topic>Laminar flow</topic><topic>Molecular dynamics</topic><topic>Nanochannels</topic><topic>Newtonian fluids</topic><topic>Water chemistry</topic><topic>Water flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maknickas, Algirdas</creatorcontrib><creatorcontrib>Skarbalius, Gediminas</creatorcontrib><creatorcontrib>Džiugys, Algis</creatorcontrib><creatorcontrib>Misiulis, Edgaras</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maknickas, Algirdas</au><au>Skarbalius, Gediminas</au><au>Džiugys, Algis</au><au>Misiulis, Edgaras</au><au>Kozień, Marek</au><au>Cecot, Witold</au><au>Reczek, Wacław</au><au>Nalepka, Kinga</au><au>Lisowski, Wojciech</au><au>Skoczeń, Błażej</au><au>Pamin, Jerzy</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Nano-scale water Poiseuille flow: MD computational experiment</atitle><btitle>AIP conference proceedings</btitle><date>2020-05-22</date><risdate>2020</risdate><volume>2239</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Because viscosity plays an important role in physical fluid flow applications, this property must be described accurately in com- puter simulations. As a most popular Newtonian fluid on earth, water has a special role in scientific and technical applications. The simulation of water with molecular dynamics (MD) includes granular matter of long-range interacting H2O molecules, and simula- tions using discrete element method, as well as experimental studies of the dynamics of spheres with sub-millimetre radii, of such systems demonstrate non-Newtonian behaviour. Therefore, the flow of water molecules with complex shapes and long-range non- linear interactions in nano-scaled fluid devices—in contrast to macro-scaled devices—is also likely to demonstrate non-Newtonian behaviour. In this study, we used molecular dynamics simulations, with a temperature range of 273 K to 363 K, to study the SPC/E water Poiseuille flow inside a nanochannel consisting of two parallel silicon plates. The results indicate non-Newtonian behaviour of molecular water flow at nanoscales.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0007798</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2020, Vol.2239 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0007798
source AIP Journals Complete
subjects Computational fluid dynamics
Computer simulation
Discrete element method
Fluid flow
Laminar flow
Molecular dynamics
Nanochannels
Newtonian fluids
Water chemistry
Water flow
title Nano-scale water Poiseuille flow: MD computational experiment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A16%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Nano-scale%20water%20Poiseuille%20flow:%20MD%20computational%20experiment&rft.btitle=AIP%20conference%20proceedings&rft.au=Maknickas,%20Algirdas&rft.date=2020-05-22&rft.volume=2239&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0007798&rft_dat=%3Cproquest_scita%3E2405740746%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405740746&rft_id=info:pmid/&rfr_iscdi=true