Nano-scale water Poiseuille flow: MD computational experiment
Because viscosity plays an important role in physical fluid flow applications, this property must be described accurately in com- puter simulations. As a most popular Newtonian fluid on earth, water has a special role in scientific and technical applications. The simulation of water with molecular d...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2239 |
creator | Maknickas, Algirdas Skarbalius, Gediminas Džiugys, Algis Misiulis, Edgaras |
description | Because viscosity plays an important role in physical fluid flow applications, this property must be described accurately in com- puter simulations. As a most popular Newtonian fluid on earth, water has a special role in scientific and technical applications. The simulation of water with molecular dynamics (MD) includes granular matter of long-range interacting H2O molecules, and simula- tions using discrete element method, as well as experimental studies of the dynamics of spheres with sub-millimetre radii, of such systems demonstrate non-Newtonian behaviour. Therefore, the flow of water molecules with complex shapes and long-range non- linear interactions in nano-scaled fluid devices—in contrast to macro-scaled devices—is also likely to demonstrate non-Newtonian behaviour. In this study, we used molecular dynamics simulations, with a temperature range of 273 K to 363 K, to study the SPC/E water Poiseuille flow inside a nanochannel consisting of two parallel silicon plates. The results indicate non-Newtonian behaviour of molecular water flow at nanoscales. |
doi_str_mv | 10.1063/5.0007798 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0007798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2405740746</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-bb65a98626196967c0c9253817b0e43e89809b1e35963d797ea502aa11781c2e3</originalsourceid><addsrcrecordid>eNotkEtLw0AUhQdRMFYX_oOAOyH13pnMS3AhrS-oj4WCu2ESbyElzcRMQvXfG0lXBw6Hw8fH2DnCHEGJKzkHAK2tOWAJSomZVqgOWQJg84zn4vOYncS4AeBWa5OwmxffhCyWvqZ053vq0rdQRRqqeizWddhdp8_LtAzbduh9X4XG1yn9tNRVW2r6U3a09nWks33O2Mf93fviMVu9PjwtbldZy9H0WVEo6a1RXKFVVukSSsulMKgLoFyQsQZsgSSkVeJLW01eAvceURssOYkZu5h-2y58DxR7twlDN7JEx3OQOgedq3F1Oa1iWU2wrh05fffrENy_HifdXo_4A-sRVQM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2405740746</pqid></control><display><type>conference_proceeding</type><title>Nano-scale water Poiseuille flow: MD computational experiment</title><source>AIP Journals Complete</source><creator>Maknickas, Algirdas ; Skarbalius, Gediminas ; Džiugys, Algis ; Misiulis, Edgaras</creator><contributor>Kozień, Marek ; Cecot, Witold ; Reczek, Wacław ; Nalepka, Kinga ; Lisowski, Wojciech ; Skoczeń, Błażej ; Pamin, Jerzy</contributor><creatorcontrib>Maknickas, Algirdas ; Skarbalius, Gediminas ; Džiugys, Algis ; Misiulis, Edgaras ; Kozień, Marek ; Cecot, Witold ; Reczek, Wacław ; Nalepka, Kinga ; Lisowski, Wojciech ; Skoczeń, Błażej ; Pamin, Jerzy</creatorcontrib><description>Because viscosity plays an important role in physical fluid flow applications, this property must be described accurately in com- puter simulations. As a most popular Newtonian fluid on earth, water has a special role in scientific and technical applications. The simulation of water with molecular dynamics (MD) includes granular matter of long-range interacting H2O molecules, and simula- tions using discrete element method, as well as experimental studies of the dynamics of spheres with sub-millimetre radii, of such systems demonstrate non-Newtonian behaviour. Therefore, the flow of water molecules with complex shapes and long-range non- linear interactions in nano-scaled fluid devices—in contrast to macro-scaled devices—is also likely to demonstrate non-Newtonian behaviour. In this study, we used molecular dynamics simulations, with a temperature range of 273 K to 363 K, to study the SPC/E water Poiseuille flow inside a nanochannel consisting of two parallel silicon plates. The results indicate non-Newtonian behaviour of molecular water flow at nanoscales.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0007798</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computational fluid dynamics ; Computer simulation ; Discrete element method ; Fluid flow ; Laminar flow ; Molecular dynamics ; Nanochannels ; Newtonian fluids ; Water chemistry ; Water flow</subject><ispartof>AIP conference proceedings, 2020, Vol.2239 (1)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0007798$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Kozień, Marek</contributor><contributor>Cecot, Witold</contributor><contributor>Reczek, Wacław</contributor><contributor>Nalepka, Kinga</contributor><contributor>Lisowski, Wojciech</contributor><contributor>Skoczeń, Błażej</contributor><contributor>Pamin, Jerzy</contributor><creatorcontrib>Maknickas, Algirdas</creatorcontrib><creatorcontrib>Skarbalius, Gediminas</creatorcontrib><creatorcontrib>Džiugys, Algis</creatorcontrib><creatorcontrib>Misiulis, Edgaras</creatorcontrib><title>Nano-scale water Poiseuille flow: MD computational experiment</title><title>AIP conference proceedings</title><description>Because viscosity plays an important role in physical fluid flow applications, this property must be described accurately in com- puter simulations. As a most popular Newtonian fluid on earth, water has a special role in scientific and technical applications. The simulation of water with molecular dynamics (MD) includes granular matter of long-range interacting H2O molecules, and simula- tions using discrete element method, as well as experimental studies of the dynamics of spheres with sub-millimetre radii, of such systems demonstrate non-Newtonian behaviour. Therefore, the flow of water molecules with complex shapes and long-range non- linear interactions in nano-scaled fluid devices—in contrast to macro-scaled devices—is also likely to demonstrate non-Newtonian behaviour. In this study, we used molecular dynamics simulations, with a temperature range of 273 K to 363 K, to study the SPC/E water Poiseuille flow inside a nanochannel consisting of two parallel silicon plates. The results indicate non-Newtonian behaviour of molecular water flow at nanoscales.</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Discrete element method</subject><subject>Fluid flow</subject><subject>Laminar flow</subject><subject>Molecular dynamics</subject><subject>Nanochannels</subject><subject>Newtonian fluids</subject><subject>Water chemistry</subject><subject>Water flow</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEtLw0AUhQdRMFYX_oOAOyH13pnMS3AhrS-oj4WCu2ESbyElzcRMQvXfG0lXBw6Hw8fH2DnCHEGJKzkHAK2tOWAJSomZVqgOWQJg84zn4vOYncS4AeBWa5OwmxffhCyWvqZ053vq0rdQRRqqeizWddhdp8_LtAzbduh9X4XG1yn9tNRVW2r6U3a09nWks33O2Mf93fviMVu9PjwtbldZy9H0WVEo6a1RXKFVVukSSsulMKgLoFyQsQZsgSSkVeJLW01eAvceURssOYkZu5h-2y58DxR7twlDN7JEx3OQOgedq3F1Oa1iWU2wrh05fffrENy_HifdXo_4A-sRVQM</recordid><startdate>20200522</startdate><enddate>20200522</enddate><creator>Maknickas, Algirdas</creator><creator>Skarbalius, Gediminas</creator><creator>Džiugys, Algis</creator><creator>Misiulis, Edgaras</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20200522</creationdate><title>Nano-scale water Poiseuille flow: MD computational experiment</title><author>Maknickas, Algirdas ; Skarbalius, Gediminas ; Džiugys, Algis ; Misiulis, Edgaras</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-bb65a98626196967c0c9253817b0e43e89809b1e35963d797ea502aa11781c2e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Discrete element method</topic><topic>Fluid flow</topic><topic>Laminar flow</topic><topic>Molecular dynamics</topic><topic>Nanochannels</topic><topic>Newtonian fluids</topic><topic>Water chemistry</topic><topic>Water flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maknickas, Algirdas</creatorcontrib><creatorcontrib>Skarbalius, Gediminas</creatorcontrib><creatorcontrib>Džiugys, Algis</creatorcontrib><creatorcontrib>Misiulis, Edgaras</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maknickas, Algirdas</au><au>Skarbalius, Gediminas</au><au>Džiugys, Algis</au><au>Misiulis, Edgaras</au><au>Kozień, Marek</au><au>Cecot, Witold</au><au>Reczek, Wacław</au><au>Nalepka, Kinga</au><au>Lisowski, Wojciech</au><au>Skoczeń, Błażej</au><au>Pamin, Jerzy</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Nano-scale water Poiseuille flow: MD computational experiment</atitle><btitle>AIP conference proceedings</btitle><date>2020-05-22</date><risdate>2020</risdate><volume>2239</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Because viscosity plays an important role in physical fluid flow applications, this property must be described accurately in com- puter simulations. As a most popular Newtonian fluid on earth, water has a special role in scientific and technical applications. The simulation of water with molecular dynamics (MD) includes granular matter of long-range interacting H2O molecules, and simula- tions using discrete element method, as well as experimental studies of the dynamics of spheres with sub-millimetre radii, of such systems demonstrate non-Newtonian behaviour. Therefore, the flow of water molecules with complex shapes and long-range non- linear interactions in nano-scaled fluid devices—in contrast to macro-scaled devices—is also likely to demonstrate non-Newtonian behaviour. In this study, we used molecular dynamics simulations, with a temperature range of 273 K to 363 K, to study the SPC/E water Poiseuille flow inside a nanochannel consisting of two parallel silicon plates. The results indicate non-Newtonian behaviour of molecular water flow at nanoscales.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0007798</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2020, Vol.2239 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0007798 |
source | AIP Journals Complete |
subjects | Computational fluid dynamics Computer simulation Discrete element method Fluid flow Laminar flow Molecular dynamics Nanochannels Newtonian fluids Water chemistry Water flow |
title | Nano-scale water Poiseuille flow: MD computational experiment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A16%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Nano-scale%20water%20Poiseuille%20flow:%20MD%20computational%20experiment&rft.btitle=AIP%20conference%20proceedings&rft.au=Maknickas,%20Algirdas&rft.date=2020-05-22&rft.volume=2239&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0007798&rft_dat=%3Cproquest_scita%3E2405740746%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405740746&rft_id=info:pmid/&rfr_iscdi=true |