Zn-induced layer exchange of p- and n-type nanocrystalline SiGe layers for flexible thermoelectrics

Fermi-level control in a polycrystalline SiGe layer is challenging, especially under a low thermal budget owing to the low activation rate of impurities and defect-induced acceptors. Here, we demonstrate the low-temperature (120–350 °C) synthesis of nanocrystalline p- and n-type Si1−xGex (x: 0–1) la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2020-05, Vol.116 (18)
Hauptverfasser: Tsuji, M., Kusano, K., Suemasu, T., Toko, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 18
container_start_page
container_title Applied physics letters
container_volume 116
creator Tsuji, M.
Kusano, K.
Suemasu, T.
Toko, K.
description Fermi-level control in a polycrystalline SiGe layer is challenging, especially under a low thermal budget owing to the low activation rate of impurities and defect-induced acceptors. Here, we demonstrate the low-temperature (120–350 °C) synthesis of nanocrystalline p- and n-type Si1−xGex (x: 0–1) layers using the layer exchange technique with a Zn catalyst. Pure Zn formed p-type SiGe layers (hole concentration: 1020 cm−3 for x ≥ 0.8) due to the shallow acceptor level of Zn in Ge. Conversely, As-doped Zn allowed us to synthesize n-type SiGe layers (electron concentration: 1019 cm−3 for x ≤ 0.3) at the lowest ever temperature of 350 °C, owing to the self-organized As doping to SiGe during layer exchange. The resulting p-type Si0.2Ge0.8 and n-type Si0.85Ge0.15 layers exhibited the largest ever power factors (280 μW/mK2 for the p-type and 15 μW/mK2 for the n-type), for SiGe fabricated on a flexible plastic sheet. The low-temperature synthesis technology, for both p- and n-type SiGe layers, opens up the possibility of developing human-friendly, highly reliable, flexible devices including thermoelectric sheets.
doi_str_mv 10.1063/5.0006958
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0006958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2397913557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-c9aaedc52d3c8f4f833926a6bad6b977bda01bd0674cb2e9aea611c875b0b2943</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgCq6rB_9BwJNC1qTZNs1RFl0FwYN68RLyMXW7dJOadGX776100YPgaZjhmRl4ETpndMZowa_zGaW0kHl5gCaMCkE4Y-UhmgxTToY5O0YnKa2HNs84nyD75knt3daCw43uIWLY2ZX274BDhVuCtXfYk65vAXvtg4196nTT1B7wc72EcSnhKkRcNbCrTQO4W0HcBGjAdrG26RQdVbpJcLavU_R6d_uyuCePT8uHxc0jsXORdcRKrcHZPHPcltW8KjmXWaELo11hpBDGacqMo4WYW5OB1KALxmwpckNNJud8ii7Gu20MH1tInVqHbfTDS5VxKSTjeS4GdTkqG0NKESrVxnqjY68YVd8ZqlztMxzs1WiTrTvd1cH_4M8Qf6FqXfUf_nv5C-ssgNI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397913557</pqid></control><display><type>article</type><title>Zn-induced layer exchange of p- and n-type nanocrystalline SiGe layers for flexible thermoelectrics</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Tsuji, M. ; Kusano, K. ; Suemasu, T. ; Toko, K.</creator><creatorcontrib>Tsuji, M. ; Kusano, K. ; Suemasu, T. ; Toko, K.</creatorcontrib><description>Fermi-level control in a polycrystalline SiGe layer is challenging, especially under a low thermal budget owing to the low activation rate of impurities and defect-induced acceptors. Here, we demonstrate the low-temperature (120–350 °C) synthesis of nanocrystalline p- and n-type Si1−xGex (x: 0–1) layers using the layer exchange technique with a Zn catalyst. Pure Zn formed p-type SiGe layers (hole concentration: 1020 cm−3 for x ≥ 0.8) due to the shallow acceptor level of Zn in Ge. Conversely, As-doped Zn allowed us to synthesize n-type SiGe layers (electron concentration: 1019 cm−3 for x ≤ 0.3) at the lowest ever temperature of 350 °C, owing to the self-organized As doping to SiGe during layer exchange. The resulting p-type Si0.2Ge0.8 and n-type Si0.85Ge0.15 layers exhibited the largest ever power factors (280 μW/mK2 for the p-type and 15 μW/mK2 for the n-type), for SiGe fabricated on a flexible plastic sheet. The low-temperature synthesis technology, for both p- and n-type SiGe layers, opens up the possibility of developing human-friendly, highly reliable, flexible devices including thermoelectric sheets.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0006958</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Exchanging ; Low temperature ; Nanocrystals ; Silicon germanides ; Synthesis</subject><ispartof>Applied physics letters, 2020-05, Vol.116 (18)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-c9aaedc52d3c8f4f833926a6bad6b977bda01bd0674cb2e9aea611c875b0b2943</citedby><cites>FETCH-LOGICAL-c472t-c9aaedc52d3c8f4f833926a6bad6b977bda01bd0674cb2e9aea611c875b0b2943</cites><orcidid>0000-0001-6012-4986 ; 0000-0002-3936-0519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0006958$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4510,27923,27924,76155</link.rule.ids></links><search><creatorcontrib>Tsuji, M.</creatorcontrib><creatorcontrib>Kusano, K.</creatorcontrib><creatorcontrib>Suemasu, T.</creatorcontrib><creatorcontrib>Toko, K.</creatorcontrib><title>Zn-induced layer exchange of p- and n-type nanocrystalline SiGe layers for flexible thermoelectrics</title><title>Applied physics letters</title><description>Fermi-level control in a polycrystalline SiGe layer is challenging, especially under a low thermal budget owing to the low activation rate of impurities and defect-induced acceptors. Here, we demonstrate the low-temperature (120–350 °C) synthesis of nanocrystalline p- and n-type Si1−xGex (x: 0–1) layers using the layer exchange technique with a Zn catalyst. Pure Zn formed p-type SiGe layers (hole concentration: 1020 cm−3 for x ≥ 0.8) due to the shallow acceptor level of Zn in Ge. Conversely, As-doped Zn allowed us to synthesize n-type SiGe layers (electron concentration: 1019 cm−3 for x ≤ 0.3) at the lowest ever temperature of 350 °C, owing to the self-organized As doping to SiGe during layer exchange. The resulting p-type Si0.2Ge0.8 and n-type Si0.85Ge0.15 layers exhibited the largest ever power factors (280 μW/mK2 for the p-type and 15 μW/mK2 for the n-type), for SiGe fabricated on a flexible plastic sheet. The low-temperature synthesis technology, for both p- and n-type SiGe layers, opens up the possibility of developing human-friendly, highly reliable, flexible devices including thermoelectric sheets.</description><subject>Applied physics</subject><subject>Exchanging</subject><subject>Low temperature</subject><subject>Nanocrystals</subject><subject>Silicon germanides</subject><subject>Synthesis</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgCq6rB_9BwJNC1qTZNs1RFl0FwYN68RLyMXW7dJOadGX776100YPgaZjhmRl4ETpndMZowa_zGaW0kHl5gCaMCkE4Y-UhmgxTToY5O0YnKa2HNs84nyD75knt3daCw43uIWLY2ZX274BDhVuCtXfYk65vAXvtg4196nTT1B7wc72EcSnhKkRcNbCrTQO4W0HcBGjAdrG26RQdVbpJcLavU_R6d_uyuCePT8uHxc0jsXORdcRKrcHZPHPcltW8KjmXWaELo11hpBDGacqMo4WYW5OB1KALxmwpckNNJud8ii7Gu20MH1tInVqHbfTDS5VxKSTjeS4GdTkqG0NKESrVxnqjY68YVd8ZqlztMxzs1WiTrTvd1cH_4M8Qf6FqXfUf_nv5C-ssgNI</recordid><startdate>20200504</startdate><enddate>20200504</enddate><creator>Tsuji, M.</creator><creator>Kusano, K.</creator><creator>Suemasu, T.</creator><creator>Toko, K.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6012-4986</orcidid><orcidid>https://orcid.org/0000-0002-3936-0519</orcidid></search><sort><creationdate>20200504</creationdate><title>Zn-induced layer exchange of p- and n-type nanocrystalline SiGe layers for flexible thermoelectrics</title><author>Tsuji, M. ; Kusano, K. ; Suemasu, T. ; Toko, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-c9aaedc52d3c8f4f833926a6bad6b977bda01bd0674cb2e9aea611c875b0b2943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Exchanging</topic><topic>Low temperature</topic><topic>Nanocrystals</topic><topic>Silicon germanides</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsuji, M.</creatorcontrib><creatorcontrib>Kusano, K.</creatorcontrib><creatorcontrib>Suemasu, T.</creatorcontrib><creatorcontrib>Toko, K.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsuji, M.</au><au>Kusano, K.</au><au>Suemasu, T.</au><au>Toko, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zn-induced layer exchange of p- and n-type nanocrystalline SiGe layers for flexible thermoelectrics</atitle><jtitle>Applied physics letters</jtitle><date>2020-05-04</date><risdate>2020</risdate><volume>116</volume><issue>18</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Fermi-level control in a polycrystalline SiGe layer is challenging, especially under a low thermal budget owing to the low activation rate of impurities and defect-induced acceptors. Here, we demonstrate the low-temperature (120–350 °C) synthesis of nanocrystalline p- and n-type Si1−xGex (x: 0–1) layers using the layer exchange technique with a Zn catalyst. Pure Zn formed p-type SiGe layers (hole concentration: 1020 cm−3 for x ≥ 0.8) due to the shallow acceptor level of Zn in Ge. Conversely, As-doped Zn allowed us to synthesize n-type SiGe layers (electron concentration: 1019 cm−3 for x ≤ 0.3) at the lowest ever temperature of 350 °C, owing to the self-organized As doping to SiGe during layer exchange. The resulting p-type Si0.2Ge0.8 and n-type Si0.85Ge0.15 layers exhibited the largest ever power factors (280 μW/mK2 for the p-type and 15 μW/mK2 for the n-type), for SiGe fabricated on a flexible plastic sheet. The low-temperature synthesis technology, for both p- and n-type SiGe layers, opens up the possibility of developing human-friendly, highly reliable, flexible devices including thermoelectric sheets.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0006958</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-6012-4986</orcidid><orcidid>https://orcid.org/0000-0002-3936-0519</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2020-05, Vol.116 (18)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_5_0006958
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Exchanging
Low temperature
Nanocrystals
Silicon germanides
Synthesis
title Zn-induced layer exchange of p- and n-type nanocrystalline SiGe layers for flexible thermoelectrics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A32%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zn-induced%20layer%20exchange%20of%20p-%20and%20n-type%20nanocrystalline%20SiGe%20layers%20for%20flexible%20thermoelectrics&rft.jtitle=Applied%20physics%20letters&rft.au=Tsuji,%20M.&rft.date=2020-05-04&rft.volume=116&rft.issue=18&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0006958&rft_dat=%3Cproquest_scita%3E2397913557%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397913557&rft_id=info:pmid/&rfr_iscdi=true