The first microsolvation step for furans: New experiments and benchmarking strategies

The site-specific first microsolvation step of furan and some of its derivatives with methanol is explored to benchmark the ability of quantum-chemical methods to describe the structure, energetics, and vibrational spectrum at low temperature. Infrared and microwave spectra in supersonic jet expansi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2020-04, Vol.152 (16), p.164303-164303
Hauptverfasser: Gottschalk, Hannes C., Poblotzki, Anja, Fatima, Mariyam, Obenchain, Daniel A., Pérez, Cristóbal, Antony, Jens, Auer, Alexander A., Baptista, Leonardo, Benoit, David M., Bistoni, Giovanni, Bohle, Fabian, Dahmani, Rahma, Firaha, Dzmitry, Grimme, Stefan, Hansen, Andreas, Harding, Michael E., Hochlaf, Majdi, Holzer, Christof, Jansen, Georg, Klopper, Wim, Kopp, Wassja A., Krasowska, Małgorzata, Kröger, Leif C., Leonhard, Kai, Mogren Al-Mogren, Muneerah, Mouhib, Halima, Neese, Frank, Pereira, Max N., Prakash, Muthuramalingam, Ulusoy, Inga S., Mata, Ricardo A., Suhm, Martin A., Schnell, Melanie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 164303
container_issue 16
container_start_page 164303
container_title The Journal of chemical physics
container_volume 152
creator Gottschalk, Hannes C.
Poblotzki, Anja
Fatima, Mariyam
Obenchain, Daniel A.
Pérez, Cristóbal
Antony, Jens
Auer, Alexander A.
Baptista, Leonardo
Benoit, David M.
Bistoni, Giovanni
Bohle, Fabian
Dahmani, Rahma
Firaha, Dzmitry
Grimme, Stefan
Hansen, Andreas
Harding, Michael E.
Hochlaf, Majdi
Holzer, Christof
Jansen, Georg
Klopper, Wim
Kopp, Wassja A.
Krasowska, Małgorzata
Kröger, Leif C.
Leonhard, Kai
Mogren Al-Mogren, Muneerah
Mouhib, Halima
Neese, Frank
Pereira, Max N.
Prakash, Muthuramalingam
Ulusoy, Inga S.
Mata, Ricardo A.
Suhm, Martin A.
Schnell, Melanie
description The site-specific first microsolvation step of furan and some of its derivatives with methanol is explored to benchmark the ability of quantum-chemical methods to describe the structure, energetics, and vibrational spectrum at low temperature. Infrared and microwave spectra in supersonic jet expansions are used to quantify the docking preference and some relevant quantum states of the model complexes. Microwave spectroscopy strictly rules out in-plane docking of methanol as opposed to the top coordination of the aromatic ring. Contrasting comparison strategies, which emphasize either the experimental or the theoretical input, are explored. Within the harmonic approximation, only a few composite computational approaches are able to achieve a satisfactory performance. Deuteration experiments suggest that the harmonic treatment itself is largely justified for the zero-point energy, likely and by design due to the systematic cancellation of important anharmonic contributions between the docking variants. Therefore, discrepancies between experiment and theory for the isomer abundance are tentatively assigned to electronic structure deficiencies, but uncertainties remain on the nuclear dynamics side. Attempts to include anharmonic contributions indicate that for systems of this size, a uniform treatment of anharmonicity with systematically improved performance is not yet in sight.
doi_str_mv 10.1063/5.0004465
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0004465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2397662720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-d97e42d30e39c9f22e18decb082ae64d6af8a6c2cbe4551fc38ce29ab4e7a0f33</originalsourceid><addsrcrecordid>eNp90U1rFDEYB_Agil2rB7-ABLy0wtS8TTLTWym1FZb20p5DJvOkmzozGZOZ1X77ZrvrFhQ8BcLveUn-CH2k5IQSyb-WJ4QQIWT5Ci0oqepCyZq8RgtCGC1qSeQBepfSQ0ZUMfEWHXDGS6UqtUB3tyvAzsc04d7bGFLo1mbyYcBpghG7ELGboxnSKb6GXxh-jxB9D8OUsBla3MBgV72JP_xwnyuimeDeQ3qP3jjTJfiwOw_R3beL2_OrYnlz-f38bFlYXrGpaGsFgrWcAK9t7RgDWrVgG1IxA1K00rjKSMtsA6IsqctVFlhtGgHKEMf5ITre9l2ZTo95MRMfdTBeX50t9eaOsFpJItSaZnu0tWMMP2dIk-59stB1ZoAwJ814ppIpRjL9_Bd9CHMc8ks2SgrOaclehm--LUVw-w0o0ZtcdKl3uWT7addxbnpo9_JPEBl82YJk_fQcwN6sQ3zppMfW_Q__O_oJIrajbg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2396433152</pqid></control><display><type>article</type><title>The first microsolvation step for furans: New experiments and benchmarking strategies</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Gottschalk, Hannes C. ; Poblotzki, Anja ; Fatima, Mariyam ; Obenchain, Daniel A. ; Pérez, Cristóbal ; Antony, Jens ; Auer, Alexander A. ; Baptista, Leonardo ; Benoit, David M. ; Bistoni, Giovanni ; Bohle, Fabian ; Dahmani, Rahma ; Firaha, Dzmitry ; Grimme, Stefan ; Hansen, Andreas ; Harding, Michael E. ; Hochlaf, Majdi ; Holzer, Christof ; Jansen, Georg ; Klopper, Wim ; Kopp, Wassja A. ; Krasowska, Małgorzata ; Kröger, Leif C. ; Leonhard, Kai ; Mogren Al-Mogren, Muneerah ; Mouhib, Halima ; Neese, Frank ; Pereira, Max N. ; Prakash, Muthuramalingam ; Ulusoy, Inga S. ; Mata, Ricardo A. ; Suhm, Martin A. ; Schnell, Melanie</creator><creatorcontrib>Gottschalk, Hannes C. ; Poblotzki, Anja ; Fatima, Mariyam ; Obenchain, Daniel A. ; Pérez, Cristóbal ; Antony, Jens ; Auer, Alexander A. ; Baptista, Leonardo ; Benoit, David M. ; Bistoni, Giovanni ; Bohle, Fabian ; Dahmani, Rahma ; Firaha, Dzmitry ; Grimme, Stefan ; Hansen, Andreas ; Harding, Michael E. ; Hochlaf, Majdi ; Holzer, Christof ; Jansen, Georg ; Klopper, Wim ; Kopp, Wassja A. ; Krasowska, Małgorzata ; Kröger, Leif C. ; Leonhard, Kai ; Mogren Al-Mogren, Muneerah ; Mouhib, Halima ; Neese, Frank ; Pereira, Max N. ; Prakash, Muthuramalingam ; Ulusoy, Inga S. ; Mata, Ricardo A. ; Suhm, Martin A. ; Schnell, Melanie</creatorcontrib><description>The site-specific first microsolvation step of furan and some of its derivatives with methanol is explored to benchmark the ability of quantum-chemical methods to describe the structure, energetics, and vibrational spectrum at low temperature. Infrared and microwave spectra in supersonic jet expansions are used to quantify the docking preference and some relevant quantum states of the model complexes. Microwave spectroscopy strictly rules out in-plane docking of methanol as opposed to the top coordination of the aromatic ring. Contrasting comparison strategies, which emphasize either the experimental or the theoretical input, are explored. Within the harmonic approximation, only a few composite computational approaches are able to achieve a satisfactory performance. Deuteration experiments suggest that the harmonic treatment itself is largely justified for the zero-point energy, likely and by design due to the systematic cancellation of important anharmonic contributions between the docking variants. Therefore, discrepancies between experiment and theory for the isomer abundance are tentatively assigned to electronic structure deficiencies, but uncertainties remain on the nuclear dynamics side. Attempts to include anharmonic contributions indicate that for systems of this size, a uniform treatment of anharmonicity with systematically improved performance is not yet in sight.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0004465</identifier><identifier>PMID: 32357787</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Anharmonicity ; Aromatic compounds ; Chemical Physics ; Deuteration ; Docking ; Electronic structure ; Furans ; Infrared spectra ; Low temperature ; Methanol ; Microwave spectra ; Physics ; Quantum chemistry ; Spectrum analysis ; Zero point energy</subject><ispartof>The Journal of chemical physics, 2020-04, Vol.152 (16), p.164303-164303</ispartof><rights>Author(s)</rights><rights>2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-d97e42d30e39c9f22e18decb082ae64d6af8a6c2cbe4551fc38ce29ab4e7a0f33</citedby><cites>FETCH-LOGICAL-c382t-d97e42d30e39c9f22e18decb082ae64d6af8a6c2cbe4551fc38ce29ab4e7a0f33</cites><orcidid>0000-0002-3633-493X ; 0000-0002-2720-3364 ; 0000-0001-8147-3464 ; 0000-0001-5248-5212 ; 0000-0003-4849-1323 ; 0000-0003-4343-9542 ; 0000-0001-9433-3313 ; 0000-0001-7771-0949 ; 0000-0002-7773-6863 ; 0000-0003-2621-6339 ; 0000-0002-0124-0933 ; 0000-0001-5533-1163 ; 0000-0001-6012-3027 ; 0000-0002-5219-9328 ; 0000-0003-0463-1726 ; 0000-0002-4737-7978 ; 0000-0002-2884-8260 ; 0000-0003-4691-0547 ; 0000-0001-8234-260X ; 0000-0001-7294-4148 ; 0000-0001-5024-516X ; 0000-0001-7801-7134 ; 0000-0001-8841-7705 ; 0000-0002-0724-3895 ; 0000-0001-6231-6957 ; 0000-0003-1659-8206 ; 0000-0002-5844-4371 ; 0000-0001-5031-3468 ; 0000-0002-1886-7708 ; 0000000172944148 ; 0000000316598206 ; 0000000155331163 ; 0000000227203364 ; 0000000277736863 ; 0000000181473464 ; 0000000188417705 ; 0000000326216339 ; 0000000207243895 ; 0000000150313468 ; 0000000194333313 ; 0000000343439542 ; 0000000152485212 ; 000000015024516X ; 0000000177710949 ; 0000000178017134 ; 0000000160123027 ; 0000000252199328 ; 0000000348491323 ; 000000023633493X ; 0000000247377978 ; 0000000162316957 ; 0000000218867708 ; 0000000228848260 ; 0000000304631726 ; 0000000258444371 ; 0000000201240933 ; 000000018234260X ; 0000000346910547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0004465$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32357787$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02976047$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gottschalk, Hannes C.</creatorcontrib><creatorcontrib>Poblotzki, Anja</creatorcontrib><creatorcontrib>Fatima, Mariyam</creatorcontrib><creatorcontrib>Obenchain, Daniel A.</creatorcontrib><creatorcontrib>Pérez, Cristóbal</creatorcontrib><creatorcontrib>Antony, Jens</creatorcontrib><creatorcontrib>Auer, Alexander A.</creatorcontrib><creatorcontrib>Baptista, Leonardo</creatorcontrib><creatorcontrib>Benoit, David M.</creatorcontrib><creatorcontrib>Bistoni, Giovanni</creatorcontrib><creatorcontrib>Bohle, Fabian</creatorcontrib><creatorcontrib>Dahmani, Rahma</creatorcontrib><creatorcontrib>Firaha, Dzmitry</creatorcontrib><creatorcontrib>Grimme, Stefan</creatorcontrib><creatorcontrib>Hansen, Andreas</creatorcontrib><creatorcontrib>Harding, Michael E.</creatorcontrib><creatorcontrib>Hochlaf, Majdi</creatorcontrib><creatorcontrib>Holzer, Christof</creatorcontrib><creatorcontrib>Jansen, Georg</creatorcontrib><creatorcontrib>Klopper, Wim</creatorcontrib><creatorcontrib>Kopp, Wassja A.</creatorcontrib><creatorcontrib>Krasowska, Małgorzata</creatorcontrib><creatorcontrib>Kröger, Leif C.</creatorcontrib><creatorcontrib>Leonhard, Kai</creatorcontrib><creatorcontrib>Mogren Al-Mogren, Muneerah</creatorcontrib><creatorcontrib>Mouhib, Halima</creatorcontrib><creatorcontrib>Neese, Frank</creatorcontrib><creatorcontrib>Pereira, Max N.</creatorcontrib><creatorcontrib>Prakash, Muthuramalingam</creatorcontrib><creatorcontrib>Ulusoy, Inga S.</creatorcontrib><creatorcontrib>Mata, Ricardo A.</creatorcontrib><creatorcontrib>Suhm, Martin A.</creatorcontrib><creatorcontrib>Schnell, Melanie</creatorcontrib><title>The first microsolvation step for furans: New experiments and benchmarking strategies</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The site-specific first microsolvation step of furan and some of its derivatives with methanol is explored to benchmark the ability of quantum-chemical methods to describe the structure, energetics, and vibrational spectrum at low temperature. Infrared and microwave spectra in supersonic jet expansions are used to quantify the docking preference and some relevant quantum states of the model complexes. Microwave spectroscopy strictly rules out in-plane docking of methanol as opposed to the top coordination of the aromatic ring. Contrasting comparison strategies, which emphasize either the experimental or the theoretical input, are explored. Within the harmonic approximation, only a few composite computational approaches are able to achieve a satisfactory performance. Deuteration experiments suggest that the harmonic treatment itself is largely justified for the zero-point energy, likely and by design due to the systematic cancellation of important anharmonic contributions between the docking variants. Therefore, discrepancies between experiment and theory for the isomer abundance are tentatively assigned to electronic structure deficiencies, but uncertainties remain on the nuclear dynamics side. Attempts to include anharmonic contributions indicate that for systems of this size, a uniform treatment of anharmonicity with systematically improved performance is not yet in sight.</description><subject>Anharmonicity</subject><subject>Aromatic compounds</subject><subject>Chemical Physics</subject><subject>Deuteration</subject><subject>Docking</subject><subject>Electronic structure</subject><subject>Furans</subject><subject>Infrared spectra</subject><subject>Low temperature</subject><subject>Methanol</subject><subject>Microwave spectra</subject><subject>Physics</subject><subject>Quantum chemistry</subject><subject>Spectrum analysis</subject><subject>Zero point energy</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90U1rFDEYB_Agil2rB7-ABLy0wtS8TTLTWym1FZb20p5DJvOkmzozGZOZ1X77ZrvrFhQ8BcLveUn-CH2k5IQSyb-WJ4QQIWT5Ci0oqepCyZq8RgtCGC1qSeQBepfSQ0ZUMfEWHXDGS6UqtUB3tyvAzsc04d7bGFLo1mbyYcBpghG7ELGboxnSKb6GXxh-jxB9D8OUsBla3MBgV72JP_xwnyuimeDeQ3qP3jjTJfiwOw_R3beL2_OrYnlz-f38bFlYXrGpaGsFgrWcAK9t7RgDWrVgG1IxA1K00rjKSMtsA6IsqctVFlhtGgHKEMf5ITre9l2ZTo95MRMfdTBeX50t9eaOsFpJItSaZnu0tWMMP2dIk-59stB1ZoAwJ814ppIpRjL9_Bd9CHMc8ks2SgrOaclehm--LUVw-w0o0ZtcdKl3uWT7addxbnpo9_JPEBl82YJk_fQcwN6sQ3zppMfW_Q__O_oJIrajbg</recordid><startdate>20200430</startdate><enddate>20200430</enddate><creator>Gottschalk, Hannes C.</creator><creator>Poblotzki, Anja</creator><creator>Fatima, Mariyam</creator><creator>Obenchain, Daniel A.</creator><creator>Pérez, Cristóbal</creator><creator>Antony, Jens</creator><creator>Auer, Alexander A.</creator><creator>Baptista, Leonardo</creator><creator>Benoit, David M.</creator><creator>Bistoni, Giovanni</creator><creator>Bohle, Fabian</creator><creator>Dahmani, Rahma</creator><creator>Firaha, Dzmitry</creator><creator>Grimme, Stefan</creator><creator>Hansen, Andreas</creator><creator>Harding, Michael E.</creator><creator>Hochlaf, Majdi</creator><creator>Holzer, Christof</creator><creator>Jansen, Georg</creator><creator>Klopper, Wim</creator><creator>Kopp, Wassja A.</creator><creator>Krasowska, Małgorzata</creator><creator>Kröger, Leif C.</creator><creator>Leonhard, Kai</creator><creator>Mogren Al-Mogren, Muneerah</creator><creator>Mouhib, Halima</creator><creator>Neese, Frank</creator><creator>Pereira, Max N.</creator><creator>Prakash, Muthuramalingam</creator><creator>Ulusoy, Inga S.</creator><creator>Mata, Ricardo A.</creator><creator>Suhm, Martin A.</creator><creator>Schnell, Melanie</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3633-493X</orcidid><orcidid>https://orcid.org/0000-0002-2720-3364</orcidid><orcidid>https://orcid.org/0000-0001-8147-3464</orcidid><orcidid>https://orcid.org/0000-0001-5248-5212</orcidid><orcidid>https://orcid.org/0000-0003-4849-1323</orcidid><orcidid>https://orcid.org/0000-0003-4343-9542</orcidid><orcidid>https://orcid.org/0000-0001-9433-3313</orcidid><orcidid>https://orcid.org/0000-0001-7771-0949</orcidid><orcidid>https://orcid.org/0000-0002-7773-6863</orcidid><orcidid>https://orcid.org/0000-0003-2621-6339</orcidid><orcidid>https://orcid.org/0000-0002-0124-0933</orcidid><orcidid>https://orcid.org/0000-0001-5533-1163</orcidid><orcidid>https://orcid.org/0000-0001-6012-3027</orcidid><orcidid>https://orcid.org/0000-0002-5219-9328</orcidid><orcidid>https://orcid.org/0000-0003-0463-1726</orcidid><orcidid>https://orcid.org/0000-0002-4737-7978</orcidid><orcidid>https://orcid.org/0000-0002-2884-8260</orcidid><orcidid>https://orcid.org/0000-0003-4691-0547</orcidid><orcidid>https://orcid.org/0000-0001-8234-260X</orcidid><orcidid>https://orcid.org/0000-0001-7294-4148</orcidid><orcidid>https://orcid.org/0000-0001-5024-516X</orcidid><orcidid>https://orcid.org/0000-0001-7801-7134</orcidid><orcidid>https://orcid.org/0000-0001-8841-7705</orcidid><orcidid>https://orcid.org/0000-0002-0724-3895</orcidid><orcidid>https://orcid.org/0000-0001-6231-6957</orcidid><orcidid>https://orcid.org/0000-0003-1659-8206</orcidid><orcidid>https://orcid.org/0000-0002-5844-4371</orcidid><orcidid>https://orcid.org/0000-0001-5031-3468</orcidid><orcidid>https://orcid.org/0000-0002-1886-7708</orcidid><orcidid>https://orcid.org/0000000172944148</orcidid><orcidid>https://orcid.org/0000000316598206</orcidid><orcidid>https://orcid.org/0000000155331163</orcidid><orcidid>https://orcid.org/0000000227203364</orcidid><orcidid>https://orcid.org/0000000277736863</orcidid><orcidid>https://orcid.org/0000000181473464</orcidid><orcidid>https://orcid.org/0000000188417705</orcidid><orcidid>https://orcid.org/0000000326216339</orcidid><orcidid>https://orcid.org/0000000207243895</orcidid><orcidid>https://orcid.org/0000000150313468</orcidid><orcidid>https://orcid.org/0000000194333313</orcidid><orcidid>https://orcid.org/0000000343439542</orcidid><orcidid>https://orcid.org/0000000152485212</orcidid><orcidid>https://orcid.org/000000015024516X</orcidid><orcidid>https://orcid.org/0000000177710949</orcidid><orcidid>https://orcid.org/0000000178017134</orcidid><orcidid>https://orcid.org/0000000160123027</orcidid><orcidid>https://orcid.org/0000000252199328</orcidid><orcidid>https://orcid.org/0000000348491323</orcidid><orcidid>https://orcid.org/000000023633493X</orcidid><orcidid>https://orcid.org/0000000247377978</orcidid><orcidid>https://orcid.org/0000000162316957</orcidid><orcidid>https://orcid.org/0000000218867708</orcidid><orcidid>https://orcid.org/0000000228848260</orcidid><orcidid>https://orcid.org/0000000304631726</orcidid><orcidid>https://orcid.org/0000000258444371</orcidid><orcidid>https://orcid.org/0000000201240933</orcidid><orcidid>https://orcid.org/000000018234260X</orcidid><orcidid>https://orcid.org/0000000346910547</orcidid></search><sort><creationdate>20200430</creationdate><title>The first microsolvation step for furans: New experiments and benchmarking strategies</title><author>Gottschalk, Hannes C. ; Poblotzki, Anja ; Fatima, Mariyam ; Obenchain, Daniel A. ; Pérez, Cristóbal ; Antony, Jens ; Auer, Alexander A. ; Baptista, Leonardo ; Benoit, David M. ; Bistoni, Giovanni ; Bohle, Fabian ; Dahmani, Rahma ; Firaha, Dzmitry ; Grimme, Stefan ; Hansen, Andreas ; Harding, Michael E. ; Hochlaf, Majdi ; Holzer, Christof ; Jansen, Georg ; Klopper, Wim ; Kopp, Wassja A. ; Krasowska, Małgorzata ; Kröger, Leif C. ; Leonhard, Kai ; Mogren Al-Mogren, Muneerah ; Mouhib, Halima ; Neese, Frank ; Pereira, Max N. ; Prakash, Muthuramalingam ; Ulusoy, Inga S. ; Mata, Ricardo A. ; Suhm, Martin A. ; Schnell, Melanie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-d97e42d30e39c9f22e18decb082ae64d6af8a6c2cbe4551fc38ce29ab4e7a0f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anharmonicity</topic><topic>Aromatic compounds</topic><topic>Chemical Physics</topic><topic>Deuteration</topic><topic>Docking</topic><topic>Electronic structure</topic><topic>Furans</topic><topic>Infrared spectra</topic><topic>Low temperature</topic><topic>Methanol</topic><topic>Microwave spectra</topic><topic>Physics</topic><topic>Quantum chemistry</topic><topic>Spectrum analysis</topic><topic>Zero point energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gottschalk, Hannes C.</creatorcontrib><creatorcontrib>Poblotzki, Anja</creatorcontrib><creatorcontrib>Fatima, Mariyam</creatorcontrib><creatorcontrib>Obenchain, Daniel A.</creatorcontrib><creatorcontrib>Pérez, Cristóbal</creatorcontrib><creatorcontrib>Antony, Jens</creatorcontrib><creatorcontrib>Auer, Alexander A.</creatorcontrib><creatorcontrib>Baptista, Leonardo</creatorcontrib><creatorcontrib>Benoit, David M.</creatorcontrib><creatorcontrib>Bistoni, Giovanni</creatorcontrib><creatorcontrib>Bohle, Fabian</creatorcontrib><creatorcontrib>Dahmani, Rahma</creatorcontrib><creatorcontrib>Firaha, Dzmitry</creatorcontrib><creatorcontrib>Grimme, Stefan</creatorcontrib><creatorcontrib>Hansen, Andreas</creatorcontrib><creatorcontrib>Harding, Michael E.</creatorcontrib><creatorcontrib>Hochlaf, Majdi</creatorcontrib><creatorcontrib>Holzer, Christof</creatorcontrib><creatorcontrib>Jansen, Georg</creatorcontrib><creatorcontrib>Klopper, Wim</creatorcontrib><creatorcontrib>Kopp, Wassja A.</creatorcontrib><creatorcontrib>Krasowska, Małgorzata</creatorcontrib><creatorcontrib>Kröger, Leif C.</creatorcontrib><creatorcontrib>Leonhard, Kai</creatorcontrib><creatorcontrib>Mogren Al-Mogren, Muneerah</creatorcontrib><creatorcontrib>Mouhib, Halima</creatorcontrib><creatorcontrib>Neese, Frank</creatorcontrib><creatorcontrib>Pereira, Max N.</creatorcontrib><creatorcontrib>Prakash, Muthuramalingam</creatorcontrib><creatorcontrib>Ulusoy, Inga S.</creatorcontrib><creatorcontrib>Mata, Ricardo A.</creatorcontrib><creatorcontrib>Suhm, Martin A.</creatorcontrib><creatorcontrib>Schnell, Melanie</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gottschalk, Hannes C.</au><au>Poblotzki, Anja</au><au>Fatima, Mariyam</au><au>Obenchain, Daniel A.</au><au>Pérez, Cristóbal</au><au>Antony, Jens</au><au>Auer, Alexander A.</au><au>Baptista, Leonardo</au><au>Benoit, David M.</au><au>Bistoni, Giovanni</au><au>Bohle, Fabian</au><au>Dahmani, Rahma</au><au>Firaha, Dzmitry</au><au>Grimme, Stefan</au><au>Hansen, Andreas</au><au>Harding, Michael E.</au><au>Hochlaf, Majdi</au><au>Holzer, Christof</au><au>Jansen, Georg</au><au>Klopper, Wim</au><au>Kopp, Wassja A.</au><au>Krasowska, Małgorzata</au><au>Kröger, Leif C.</au><au>Leonhard, Kai</au><au>Mogren Al-Mogren, Muneerah</au><au>Mouhib, Halima</au><au>Neese, Frank</au><au>Pereira, Max N.</au><au>Prakash, Muthuramalingam</au><au>Ulusoy, Inga S.</au><au>Mata, Ricardo A.</au><au>Suhm, Martin A.</au><au>Schnell, Melanie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The first microsolvation step for furans: New experiments and benchmarking strategies</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2020-04-30</date><risdate>2020</risdate><volume>152</volume><issue>16</issue><spage>164303</spage><epage>164303</epage><pages>164303-164303</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The site-specific first microsolvation step of furan and some of its derivatives with methanol is explored to benchmark the ability of quantum-chemical methods to describe the structure, energetics, and vibrational spectrum at low temperature. Infrared and microwave spectra in supersonic jet expansions are used to quantify the docking preference and some relevant quantum states of the model complexes. Microwave spectroscopy strictly rules out in-plane docking of methanol as opposed to the top coordination of the aromatic ring. Contrasting comparison strategies, which emphasize either the experimental or the theoretical input, are explored. Within the harmonic approximation, only a few composite computational approaches are able to achieve a satisfactory performance. Deuteration experiments suggest that the harmonic treatment itself is largely justified for the zero-point energy, likely and by design due to the systematic cancellation of important anharmonic contributions between the docking variants. Therefore, discrepancies between experiment and theory for the isomer abundance are tentatively assigned to electronic structure deficiencies, but uncertainties remain on the nuclear dynamics side. Attempts to include anharmonic contributions indicate that for systems of this size, a uniform treatment of anharmonicity with systematically improved performance is not yet in sight.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>32357787</pmid><doi>10.1063/5.0004465</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3633-493X</orcidid><orcidid>https://orcid.org/0000-0002-2720-3364</orcidid><orcidid>https://orcid.org/0000-0001-8147-3464</orcidid><orcidid>https://orcid.org/0000-0001-5248-5212</orcidid><orcidid>https://orcid.org/0000-0003-4849-1323</orcidid><orcidid>https://orcid.org/0000-0003-4343-9542</orcidid><orcidid>https://orcid.org/0000-0001-9433-3313</orcidid><orcidid>https://orcid.org/0000-0001-7771-0949</orcidid><orcidid>https://orcid.org/0000-0002-7773-6863</orcidid><orcidid>https://orcid.org/0000-0003-2621-6339</orcidid><orcidid>https://orcid.org/0000-0002-0124-0933</orcidid><orcidid>https://orcid.org/0000-0001-5533-1163</orcidid><orcidid>https://orcid.org/0000-0001-6012-3027</orcidid><orcidid>https://orcid.org/0000-0002-5219-9328</orcidid><orcidid>https://orcid.org/0000-0003-0463-1726</orcidid><orcidid>https://orcid.org/0000-0002-4737-7978</orcidid><orcidid>https://orcid.org/0000-0002-2884-8260</orcidid><orcidid>https://orcid.org/0000-0003-4691-0547</orcidid><orcidid>https://orcid.org/0000-0001-8234-260X</orcidid><orcidid>https://orcid.org/0000-0001-7294-4148</orcidid><orcidid>https://orcid.org/0000-0001-5024-516X</orcidid><orcidid>https://orcid.org/0000-0001-7801-7134</orcidid><orcidid>https://orcid.org/0000-0001-8841-7705</orcidid><orcidid>https://orcid.org/0000-0002-0724-3895</orcidid><orcidid>https://orcid.org/0000-0001-6231-6957</orcidid><orcidid>https://orcid.org/0000-0003-1659-8206</orcidid><orcidid>https://orcid.org/0000-0002-5844-4371</orcidid><orcidid>https://orcid.org/0000-0001-5031-3468</orcidid><orcidid>https://orcid.org/0000-0002-1886-7708</orcidid><orcidid>https://orcid.org/0000000172944148</orcidid><orcidid>https://orcid.org/0000000316598206</orcidid><orcidid>https://orcid.org/0000000155331163</orcidid><orcidid>https://orcid.org/0000000227203364</orcidid><orcidid>https://orcid.org/0000000277736863</orcidid><orcidid>https://orcid.org/0000000181473464</orcidid><orcidid>https://orcid.org/0000000188417705</orcidid><orcidid>https://orcid.org/0000000326216339</orcidid><orcidid>https://orcid.org/0000000207243895</orcidid><orcidid>https://orcid.org/0000000150313468</orcidid><orcidid>https://orcid.org/0000000194333313</orcidid><orcidid>https://orcid.org/0000000343439542</orcidid><orcidid>https://orcid.org/0000000152485212</orcidid><orcidid>https://orcid.org/000000015024516X</orcidid><orcidid>https://orcid.org/0000000177710949</orcidid><orcidid>https://orcid.org/0000000178017134</orcidid><orcidid>https://orcid.org/0000000160123027</orcidid><orcidid>https://orcid.org/0000000252199328</orcidid><orcidid>https://orcid.org/0000000348491323</orcidid><orcidid>https://orcid.org/000000023633493X</orcidid><orcidid>https://orcid.org/0000000247377978</orcidid><orcidid>https://orcid.org/0000000162316957</orcidid><orcidid>https://orcid.org/0000000218867708</orcidid><orcidid>https://orcid.org/0000000228848260</orcidid><orcidid>https://orcid.org/0000000304631726</orcidid><orcidid>https://orcid.org/0000000258444371</orcidid><orcidid>https://orcid.org/0000000201240933</orcidid><orcidid>https://orcid.org/000000018234260X</orcidid><orcidid>https://orcid.org/0000000346910547</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2020-04, Vol.152 (16), p.164303-164303
issn 0021-9606
1089-7690
language eng
recordid cdi_scitation_primary_10_1063_5_0004465
source AIP Journals Complete; Alma/SFX Local Collection
subjects Anharmonicity
Aromatic compounds
Chemical Physics
Deuteration
Docking
Electronic structure
Furans
Infrared spectra
Low temperature
Methanol
Microwave spectra
Physics
Quantum chemistry
Spectrum analysis
Zero point energy
title The first microsolvation step for furans: New experiments and benchmarking strategies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T08%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20first%20microsolvation%20step%20for%20furans:%20New%20experiments%20and%20benchmarking%20strategies&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Gottschalk,%20Hannes%20C.&rft.date=2020-04-30&rft.volume=152&rft.issue=16&rft.spage=164303&rft.epage=164303&rft.pages=164303-164303&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0004465&rft_dat=%3Cproquest_scita%3E2397662720%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2396433152&rft_id=info:pmid/32357787&rfr_iscdi=true