The first microsolvation step for furans: New experiments and benchmarking strategies
The site-specific first microsolvation step of furan and some of its derivatives with methanol is explored to benchmark the ability of quantum-chemical methods to describe the structure, energetics, and vibrational spectrum at low temperature. Infrared and microwave spectra in supersonic jet expansi...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2020-04, Vol.152 (16), p.164303-164303 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 164303 |
---|---|
container_issue | 16 |
container_start_page | 164303 |
container_title | The Journal of chemical physics |
container_volume | 152 |
creator | Gottschalk, Hannes C. Poblotzki, Anja Fatima, Mariyam Obenchain, Daniel A. Pérez, Cristóbal Antony, Jens Auer, Alexander A. Baptista, Leonardo Benoit, David M. Bistoni, Giovanni Bohle, Fabian Dahmani, Rahma Firaha, Dzmitry Grimme, Stefan Hansen, Andreas Harding, Michael E. Hochlaf, Majdi Holzer, Christof Jansen, Georg Klopper, Wim Kopp, Wassja A. Krasowska, Małgorzata Kröger, Leif C. Leonhard, Kai Mogren Al-Mogren, Muneerah Mouhib, Halima Neese, Frank Pereira, Max N. Prakash, Muthuramalingam Ulusoy, Inga S. Mata, Ricardo A. Suhm, Martin A. Schnell, Melanie |
description | The site-specific first microsolvation step of furan and some of its derivatives with methanol is explored to benchmark the ability of quantum-chemical methods to describe the structure, energetics, and vibrational spectrum at low temperature. Infrared and microwave spectra in supersonic jet expansions are used to quantify the docking preference and some relevant quantum states of the model complexes. Microwave spectroscopy strictly rules out in-plane docking of methanol as opposed to the top coordination of the aromatic ring. Contrasting comparison strategies, which emphasize either the experimental or the theoretical input, are explored. Within the harmonic approximation, only a few composite computational approaches are able to achieve a satisfactory performance. Deuteration experiments suggest that the harmonic treatment itself is largely justified for the zero-point energy, likely and by design due to the systematic cancellation of important anharmonic contributions between the docking variants. Therefore, discrepancies between experiment and theory for the isomer abundance are tentatively assigned to electronic structure deficiencies, but uncertainties remain on the nuclear dynamics side. Attempts to include anharmonic contributions indicate that for systems of this size, a uniform treatment of anharmonicity with systematically improved performance is not yet in sight. |
doi_str_mv | 10.1063/5.0004465 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0004465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2397662720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-d97e42d30e39c9f22e18decb082ae64d6af8a6c2cbe4551fc38ce29ab4e7a0f33</originalsourceid><addsrcrecordid>eNp90U1rFDEYB_Agil2rB7-ABLy0wtS8TTLTWym1FZb20p5DJvOkmzozGZOZ1X77ZrvrFhQ8BcLveUn-CH2k5IQSyb-WJ4QQIWT5Ci0oqepCyZq8RgtCGC1qSeQBepfSQ0ZUMfEWHXDGS6UqtUB3tyvAzsc04d7bGFLo1mbyYcBpghG7ELGboxnSKb6GXxh-jxB9D8OUsBla3MBgV72JP_xwnyuimeDeQ3qP3jjTJfiwOw_R3beL2_OrYnlz-f38bFlYXrGpaGsFgrWcAK9t7RgDWrVgG1IxA1K00rjKSMtsA6IsqctVFlhtGgHKEMf5ITre9l2ZTo95MRMfdTBeX50t9eaOsFpJItSaZnu0tWMMP2dIk-59stB1ZoAwJ814ppIpRjL9_Bd9CHMc8ks2SgrOaclehm--LUVw-w0o0ZtcdKl3uWT7addxbnpo9_JPEBl82YJk_fQcwN6sQ3zppMfW_Q__O_oJIrajbg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2396433152</pqid></control><display><type>article</type><title>The first microsolvation step for furans: New experiments and benchmarking strategies</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Gottschalk, Hannes C. ; Poblotzki, Anja ; Fatima, Mariyam ; Obenchain, Daniel A. ; Pérez, Cristóbal ; Antony, Jens ; Auer, Alexander A. ; Baptista, Leonardo ; Benoit, David M. ; Bistoni, Giovanni ; Bohle, Fabian ; Dahmani, Rahma ; Firaha, Dzmitry ; Grimme, Stefan ; Hansen, Andreas ; Harding, Michael E. ; Hochlaf, Majdi ; Holzer, Christof ; Jansen, Georg ; Klopper, Wim ; Kopp, Wassja A. ; Krasowska, Małgorzata ; Kröger, Leif C. ; Leonhard, Kai ; Mogren Al-Mogren, Muneerah ; Mouhib, Halima ; Neese, Frank ; Pereira, Max N. ; Prakash, Muthuramalingam ; Ulusoy, Inga S. ; Mata, Ricardo A. ; Suhm, Martin A. ; Schnell, Melanie</creator><creatorcontrib>Gottschalk, Hannes C. ; Poblotzki, Anja ; Fatima, Mariyam ; Obenchain, Daniel A. ; Pérez, Cristóbal ; Antony, Jens ; Auer, Alexander A. ; Baptista, Leonardo ; Benoit, David M. ; Bistoni, Giovanni ; Bohle, Fabian ; Dahmani, Rahma ; Firaha, Dzmitry ; Grimme, Stefan ; Hansen, Andreas ; Harding, Michael E. ; Hochlaf, Majdi ; Holzer, Christof ; Jansen, Georg ; Klopper, Wim ; Kopp, Wassja A. ; Krasowska, Małgorzata ; Kröger, Leif C. ; Leonhard, Kai ; Mogren Al-Mogren, Muneerah ; Mouhib, Halima ; Neese, Frank ; Pereira, Max N. ; Prakash, Muthuramalingam ; Ulusoy, Inga S. ; Mata, Ricardo A. ; Suhm, Martin A. ; Schnell, Melanie</creatorcontrib><description>The site-specific first microsolvation step of furan and some of its derivatives with methanol is explored to benchmark the ability of quantum-chemical methods to describe the structure, energetics, and vibrational spectrum at low temperature. Infrared and microwave spectra in supersonic jet expansions are used to quantify the docking preference and some relevant quantum states of the model complexes. Microwave spectroscopy strictly rules out in-plane docking of methanol as opposed to the top coordination of the aromatic ring. Contrasting comparison strategies, which emphasize either the experimental or the theoretical input, are explored. Within the harmonic approximation, only a few composite computational approaches are able to achieve a satisfactory performance. Deuteration experiments suggest that the harmonic treatment itself is largely justified for the zero-point energy, likely and by design due to the systematic cancellation of important anharmonic contributions between the docking variants. Therefore, discrepancies between experiment and theory for the isomer abundance are tentatively assigned to electronic structure deficiencies, but uncertainties remain on the nuclear dynamics side. Attempts to include anharmonic contributions indicate that for systems of this size, a uniform treatment of anharmonicity with systematically improved performance is not yet in sight.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0004465</identifier><identifier>PMID: 32357787</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Anharmonicity ; Aromatic compounds ; Chemical Physics ; Deuteration ; Docking ; Electronic structure ; Furans ; Infrared spectra ; Low temperature ; Methanol ; Microwave spectra ; Physics ; Quantum chemistry ; Spectrum analysis ; Zero point energy</subject><ispartof>The Journal of chemical physics, 2020-04, Vol.152 (16), p.164303-164303</ispartof><rights>Author(s)</rights><rights>2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-d97e42d30e39c9f22e18decb082ae64d6af8a6c2cbe4551fc38ce29ab4e7a0f33</citedby><cites>FETCH-LOGICAL-c382t-d97e42d30e39c9f22e18decb082ae64d6af8a6c2cbe4551fc38ce29ab4e7a0f33</cites><orcidid>0000-0002-3633-493X ; 0000-0002-2720-3364 ; 0000-0001-8147-3464 ; 0000-0001-5248-5212 ; 0000-0003-4849-1323 ; 0000-0003-4343-9542 ; 0000-0001-9433-3313 ; 0000-0001-7771-0949 ; 0000-0002-7773-6863 ; 0000-0003-2621-6339 ; 0000-0002-0124-0933 ; 0000-0001-5533-1163 ; 0000-0001-6012-3027 ; 0000-0002-5219-9328 ; 0000-0003-0463-1726 ; 0000-0002-4737-7978 ; 0000-0002-2884-8260 ; 0000-0003-4691-0547 ; 0000-0001-8234-260X ; 0000-0001-7294-4148 ; 0000-0001-5024-516X ; 0000-0001-7801-7134 ; 0000-0001-8841-7705 ; 0000-0002-0724-3895 ; 0000-0001-6231-6957 ; 0000-0003-1659-8206 ; 0000-0002-5844-4371 ; 0000-0001-5031-3468 ; 0000-0002-1886-7708 ; 0000000172944148 ; 0000000316598206 ; 0000000155331163 ; 0000000227203364 ; 0000000277736863 ; 0000000181473464 ; 0000000188417705 ; 0000000326216339 ; 0000000207243895 ; 0000000150313468 ; 0000000194333313 ; 0000000343439542 ; 0000000152485212 ; 000000015024516X ; 0000000177710949 ; 0000000178017134 ; 0000000160123027 ; 0000000252199328 ; 0000000348491323 ; 000000023633493X ; 0000000247377978 ; 0000000162316957 ; 0000000218867708 ; 0000000228848260 ; 0000000304631726 ; 0000000258444371 ; 0000000201240933 ; 000000018234260X ; 0000000346910547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0004465$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32357787$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02976047$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gottschalk, Hannes C.</creatorcontrib><creatorcontrib>Poblotzki, Anja</creatorcontrib><creatorcontrib>Fatima, Mariyam</creatorcontrib><creatorcontrib>Obenchain, Daniel A.</creatorcontrib><creatorcontrib>Pérez, Cristóbal</creatorcontrib><creatorcontrib>Antony, Jens</creatorcontrib><creatorcontrib>Auer, Alexander A.</creatorcontrib><creatorcontrib>Baptista, Leonardo</creatorcontrib><creatorcontrib>Benoit, David M.</creatorcontrib><creatorcontrib>Bistoni, Giovanni</creatorcontrib><creatorcontrib>Bohle, Fabian</creatorcontrib><creatorcontrib>Dahmani, Rahma</creatorcontrib><creatorcontrib>Firaha, Dzmitry</creatorcontrib><creatorcontrib>Grimme, Stefan</creatorcontrib><creatorcontrib>Hansen, Andreas</creatorcontrib><creatorcontrib>Harding, Michael E.</creatorcontrib><creatorcontrib>Hochlaf, Majdi</creatorcontrib><creatorcontrib>Holzer, Christof</creatorcontrib><creatorcontrib>Jansen, Georg</creatorcontrib><creatorcontrib>Klopper, Wim</creatorcontrib><creatorcontrib>Kopp, Wassja A.</creatorcontrib><creatorcontrib>Krasowska, Małgorzata</creatorcontrib><creatorcontrib>Kröger, Leif C.</creatorcontrib><creatorcontrib>Leonhard, Kai</creatorcontrib><creatorcontrib>Mogren Al-Mogren, Muneerah</creatorcontrib><creatorcontrib>Mouhib, Halima</creatorcontrib><creatorcontrib>Neese, Frank</creatorcontrib><creatorcontrib>Pereira, Max N.</creatorcontrib><creatorcontrib>Prakash, Muthuramalingam</creatorcontrib><creatorcontrib>Ulusoy, Inga S.</creatorcontrib><creatorcontrib>Mata, Ricardo A.</creatorcontrib><creatorcontrib>Suhm, Martin A.</creatorcontrib><creatorcontrib>Schnell, Melanie</creatorcontrib><title>The first microsolvation step for furans: New experiments and benchmarking strategies</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The site-specific first microsolvation step of furan and some of its derivatives with methanol is explored to benchmark the ability of quantum-chemical methods to describe the structure, energetics, and vibrational spectrum at low temperature. Infrared and microwave spectra in supersonic jet expansions are used to quantify the docking preference and some relevant quantum states of the model complexes. Microwave spectroscopy strictly rules out in-plane docking of methanol as opposed to the top coordination of the aromatic ring. Contrasting comparison strategies, which emphasize either the experimental or the theoretical input, are explored. Within the harmonic approximation, only a few composite computational approaches are able to achieve a satisfactory performance. Deuteration experiments suggest that the harmonic treatment itself is largely justified for the zero-point energy, likely and by design due to the systematic cancellation of important anharmonic contributions between the docking variants. Therefore, discrepancies between experiment and theory for the isomer abundance are tentatively assigned to electronic structure deficiencies, but uncertainties remain on the nuclear dynamics side. Attempts to include anharmonic contributions indicate that for systems of this size, a uniform treatment of anharmonicity with systematically improved performance is not yet in sight.</description><subject>Anharmonicity</subject><subject>Aromatic compounds</subject><subject>Chemical Physics</subject><subject>Deuteration</subject><subject>Docking</subject><subject>Electronic structure</subject><subject>Furans</subject><subject>Infrared spectra</subject><subject>Low temperature</subject><subject>Methanol</subject><subject>Microwave spectra</subject><subject>Physics</subject><subject>Quantum chemistry</subject><subject>Spectrum analysis</subject><subject>Zero point energy</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90U1rFDEYB_Agil2rB7-ABLy0wtS8TTLTWym1FZb20p5DJvOkmzozGZOZ1X77ZrvrFhQ8BcLveUn-CH2k5IQSyb-WJ4QQIWT5Ci0oqepCyZq8RgtCGC1qSeQBepfSQ0ZUMfEWHXDGS6UqtUB3tyvAzsc04d7bGFLo1mbyYcBpghG7ELGboxnSKb6GXxh-jxB9D8OUsBla3MBgV72JP_xwnyuimeDeQ3qP3jjTJfiwOw_R3beL2_OrYnlz-f38bFlYXrGpaGsFgrWcAK9t7RgDWrVgG1IxA1K00rjKSMtsA6IsqctVFlhtGgHKEMf5ITre9l2ZTo95MRMfdTBeX50t9eaOsFpJItSaZnu0tWMMP2dIk-59stB1ZoAwJ814ppIpRjL9_Bd9CHMc8ks2SgrOaclehm--LUVw-w0o0ZtcdKl3uWT7addxbnpo9_JPEBl82YJk_fQcwN6sQ3zppMfW_Q__O_oJIrajbg</recordid><startdate>20200430</startdate><enddate>20200430</enddate><creator>Gottschalk, Hannes C.</creator><creator>Poblotzki, Anja</creator><creator>Fatima, Mariyam</creator><creator>Obenchain, Daniel A.</creator><creator>Pérez, Cristóbal</creator><creator>Antony, Jens</creator><creator>Auer, Alexander A.</creator><creator>Baptista, Leonardo</creator><creator>Benoit, David M.</creator><creator>Bistoni, Giovanni</creator><creator>Bohle, Fabian</creator><creator>Dahmani, Rahma</creator><creator>Firaha, Dzmitry</creator><creator>Grimme, Stefan</creator><creator>Hansen, Andreas</creator><creator>Harding, Michael E.</creator><creator>Hochlaf, Majdi</creator><creator>Holzer, Christof</creator><creator>Jansen, Georg</creator><creator>Klopper, Wim</creator><creator>Kopp, Wassja A.</creator><creator>Krasowska, Małgorzata</creator><creator>Kröger, Leif C.</creator><creator>Leonhard, Kai</creator><creator>Mogren Al-Mogren, Muneerah</creator><creator>Mouhib, Halima</creator><creator>Neese, Frank</creator><creator>Pereira, Max N.</creator><creator>Prakash, Muthuramalingam</creator><creator>Ulusoy, Inga S.</creator><creator>Mata, Ricardo A.</creator><creator>Suhm, Martin A.</creator><creator>Schnell, Melanie</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3633-493X</orcidid><orcidid>https://orcid.org/0000-0002-2720-3364</orcidid><orcidid>https://orcid.org/0000-0001-8147-3464</orcidid><orcidid>https://orcid.org/0000-0001-5248-5212</orcidid><orcidid>https://orcid.org/0000-0003-4849-1323</orcidid><orcidid>https://orcid.org/0000-0003-4343-9542</orcidid><orcidid>https://orcid.org/0000-0001-9433-3313</orcidid><orcidid>https://orcid.org/0000-0001-7771-0949</orcidid><orcidid>https://orcid.org/0000-0002-7773-6863</orcidid><orcidid>https://orcid.org/0000-0003-2621-6339</orcidid><orcidid>https://orcid.org/0000-0002-0124-0933</orcidid><orcidid>https://orcid.org/0000-0001-5533-1163</orcidid><orcidid>https://orcid.org/0000-0001-6012-3027</orcidid><orcidid>https://orcid.org/0000-0002-5219-9328</orcidid><orcidid>https://orcid.org/0000-0003-0463-1726</orcidid><orcidid>https://orcid.org/0000-0002-4737-7978</orcidid><orcidid>https://orcid.org/0000-0002-2884-8260</orcidid><orcidid>https://orcid.org/0000-0003-4691-0547</orcidid><orcidid>https://orcid.org/0000-0001-8234-260X</orcidid><orcidid>https://orcid.org/0000-0001-7294-4148</orcidid><orcidid>https://orcid.org/0000-0001-5024-516X</orcidid><orcidid>https://orcid.org/0000-0001-7801-7134</orcidid><orcidid>https://orcid.org/0000-0001-8841-7705</orcidid><orcidid>https://orcid.org/0000-0002-0724-3895</orcidid><orcidid>https://orcid.org/0000-0001-6231-6957</orcidid><orcidid>https://orcid.org/0000-0003-1659-8206</orcidid><orcidid>https://orcid.org/0000-0002-5844-4371</orcidid><orcidid>https://orcid.org/0000-0001-5031-3468</orcidid><orcidid>https://orcid.org/0000-0002-1886-7708</orcidid><orcidid>https://orcid.org/0000000172944148</orcidid><orcidid>https://orcid.org/0000000316598206</orcidid><orcidid>https://orcid.org/0000000155331163</orcidid><orcidid>https://orcid.org/0000000227203364</orcidid><orcidid>https://orcid.org/0000000277736863</orcidid><orcidid>https://orcid.org/0000000181473464</orcidid><orcidid>https://orcid.org/0000000188417705</orcidid><orcidid>https://orcid.org/0000000326216339</orcidid><orcidid>https://orcid.org/0000000207243895</orcidid><orcidid>https://orcid.org/0000000150313468</orcidid><orcidid>https://orcid.org/0000000194333313</orcidid><orcidid>https://orcid.org/0000000343439542</orcidid><orcidid>https://orcid.org/0000000152485212</orcidid><orcidid>https://orcid.org/000000015024516X</orcidid><orcidid>https://orcid.org/0000000177710949</orcidid><orcidid>https://orcid.org/0000000178017134</orcidid><orcidid>https://orcid.org/0000000160123027</orcidid><orcidid>https://orcid.org/0000000252199328</orcidid><orcidid>https://orcid.org/0000000348491323</orcidid><orcidid>https://orcid.org/000000023633493X</orcidid><orcidid>https://orcid.org/0000000247377978</orcidid><orcidid>https://orcid.org/0000000162316957</orcidid><orcidid>https://orcid.org/0000000218867708</orcidid><orcidid>https://orcid.org/0000000228848260</orcidid><orcidid>https://orcid.org/0000000304631726</orcidid><orcidid>https://orcid.org/0000000258444371</orcidid><orcidid>https://orcid.org/0000000201240933</orcidid><orcidid>https://orcid.org/000000018234260X</orcidid><orcidid>https://orcid.org/0000000346910547</orcidid></search><sort><creationdate>20200430</creationdate><title>The first microsolvation step for furans: New experiments and benchmarking strategies</title><author>Gottschalk, Hannes C. ; Poblotzki, Anja ; Fatima, Mariyam ; Obenchain, Daniel A. ; Pérez, Cristóbal ; Antony, Jens ; Auer, Alexander A. ; Baptista, Leonardo ; Benoit, David M. ; Bistoni, Giovanni ; Bohle, Fabian ; Dahmani, Rahma ; Firaha, Dzmitry ; Grimme, Stefan ; Hansen, Andreas ; Harding, Michael E. ; Hochlaf, Majdi ; Holzer, Christof ; Jansen, Georg ; Klopper, Wim ; Kopp, Wassja A. ; Krasowska, Małgorzata ; Kröger, Leif C. ; Leonhard, Kai ; Mogren Al-Mogren, Muneerah ; Mouhib, Halima ; Neese, Frank ; Pereira, Max N. ; Prakash, Muthuramalingam ; Ulusoy, Inga S. ; Mata, Ricardo A. ; Suhm, Martin A. ; Schnell, Melanie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-d97e42d30e39c9f22e18decb082ae64d6af8a6c2cbe4551fc38ce29ab4e7a0f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anharmonicity</topic><topic>Aromatic compounds</topic><topic>Chemical Physics</topic><topic>Deuteration</topic><topic>Docking</topic><topic>Electronic structure</topic><topic>Furans</topic><topic>Infrared spectra</topic><topic>Low temperature</topic><topic>Methanol</topic><topic>Microwave spectra</topic><topic>Physics</topic><topic>Quantum chemistry</topic><topic>Spectrum analysis</topic><topic>Zero point energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gottschalk, Hannes C.</creatorcontrib><creatorcontrib>Poblotzki, Anja</creatorcontrib><creatorcontrib>Fatima, Mariyam</creatorcontrib><creatorcontrib>Obenchain, Daniel A.</creatorcontrib><creatorcontrib>Pérez, Cristóbal</creatorcontrib><creatorcontrib>Antony, Jens</creatorcontrib><creatorcontrib>Auer, Alexander A.</creatorcontrib><creatorcontrib>Baptista, Leonardo</creatorcontrib><creatorcontrib>Benoit, David M.</creatorcontrib><creatorcontrib>Bistoni, Giovanni</creatorcontrib><creatorcontrib>Bohle, Fabian</creatorcontrib><creatorcontrib>Dahmani, Rahma</creatorcontrib><creatorcontrib>Firaha, Dzmitry</creatorcontrib><creatorcontrib>Grimme, Stefan</creatorcontrib><creatorcontrib>Hansen, Andreas</creatorcontrib><creatorcontrib>Harding, Michael E.</creatorcontrib><creatorcontrib>Hochlaf, Majdi</creatorcontrib><creatorcontrib>Holzer, Christof</creatorcontrib><creatorcontrib>Jansen, Georg</creatorcontrib><creatorcontrib>Klopper, Wim</creatorcontrib><creatorcontrib>Kopp, Wassja A.</creatorcontrib><creatorcontrib>Krasowska, Małgorzata</creatorcontrib><creatorcontrib>Kröger, Leif C.</creatorcontrib><creatorcontrib>Leonhard, Kai</creatorcontrib><creatorcontrib>Mogren Al-Mogren, Muneerah</creatorcontrib><creatorcontrib>Mouhib, Halima</creatorcontrib><creatorcontrib>Neese, Frank</creatorcontrib><creatorcontrib>Pereira, Max N.</creatorcontrib><creatorcontrib>Prakash, Muthuramalingam</creatorcontrib><creatorcontrib>Ulusoy, Inga S.</creatorcontrib><creatorcontrib>Mata, Ricardo A.</creatorcontrib><creatorcontrib>Suhm, Martin A.</creatorcontrib><creatorcontrib>Schnell, Melanie</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gottschalk, Hannes C.</au><au>Poblotzki, Anja</au><au>Fatima, Mariyam</au><au>Obenchain, Daniel A.</au><au>Pérez, Cristóbal</au><au>Antony, Jens</au><au>Auer, Alexander A.</au><au>Baptista, Leonardo</au><au>Benoit, David M.</au><au>Bistoni, Giovanni</au><au>Bohle, Fabian</au><au>Dahmani, Rahma</au><au>Firaha, Dzmitry</au><au>Grimme, Stefan</au><au>Hansen, Andreas</au><au>Harding, Michael E.</au><au>Hochlaf, Majdi</au><au>Holzer, Christof</au><au>Jansen, Georg</au><au>Klopper, Wim</au><au>Kopp, Wassja A.</au><au>Krasowska, Małgorzata</au><au>Kröger, Leif C.</au><au>Leonhard, Kai</au><au>Mogren Al-Mogren, Muneerah</au><au>Mouhib, Halima</au><au>Neese, Frank</au><au>Pereira, Max N.</au><au>Prakash, Muthuramalingam</au><au>Ulusoy, Inga S.</au><au>Mata, Ricardo A.</au><au>Suhm, Martin A.</au><au>Schnell, Melanie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The first microsolvation step for furans: New experiments and benchmarking strategies</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2020-04-30</date><risdate>2020</risdate><volume>152</volume><issue>16</issue><spage>164303</spage><epage>164303</epage><pages>164303-164303</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The site-specific first microsolvation step of furan and some of its derivatives with methanol is explored to benchmark the ability of quantum-chemical methods to describe the structure, energetics, and vibrational spectrum at low temperature. Infrared and microwave spectra in supersonic jet expansions are used to quantify the docking preference and some relevant quantum states of the model complexes. Microwave spectroscopy strictly rules out in-plane docking of methanol as opposed to the top coordination of the aromatic ring. Contrasting comparison strategies, which emphasize either the experimental or the theoretical input, are explored. Within the harmonic approximation, only a few composite computational approaches are able to achieve a satisfactory performance. Deuteration experiments suggest that the harmonic treatment itself is largely justified for the zero-point energy, likely and by design due to the systematic cancellation of important anharmonic contributions between the docking variants. Therefore, discrepancies between experiment and theory for the isomer abundance are tentatively assigned to electronic structure deficiencies, but uncertainties remain on the nuclear dynamics side. Attempts to include anharmonic contributions indicate that for systems of this size, a uniform treatment of anharmonicity with systematically improved performance is not yet in sight.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>32357787</pmid><doi>10.1063/5.0004465</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3633-493X</orcidid><orcidid>https://orcid.org/0000-0002-2720-3364</orcidid><orcidid>https://orcid.org/0000-0001-8147-3464</orcidid><orcidid>https://orcid.org/0000-0001-5248-5212</orcidid><orcidid>https://orcid.org/0000-0003-4849-1323</orcidid><orcidid>https://orcid.org/0000-0003-4343-9542</orcidid><orcidid>https://orcid.org/0000-0001-9433-3313</orcidid><orcidid>https://orcid.org/0000-0001-7771-0949</orcidid><orcidid>https://orcid.org/0000-0002-7773-6863</orcidid><orcidid>https://orcid.org/0000-0003-2621-6339</orcidid><orcidid>https://orcid.org/0000-0002-0124-0933</orcidid><orcidid>https://orcid.org/0000-0001-5533-1163</orcidid><orcidid>https://orcid.org/0000-0001-6012-3027</orcidid><orcidid>https://orcid.org/0000-0002-5219-9328</orcidid><orcidid>https://orcid.org/0000-0003-0463-1726</orcidid><orcidid>https://orcid.org/0000-0002-4737-7978</orcidid><orcidid>https://orcid.org/0000-0002-2884-8260</orcidid><orcidid>https://orcid.org/0000-0003-4691-0547</orcidid><orcidid>https://orcid.org/0000-0001-8234-260X</orcidid><orcidid>https://orcid.org/0000-0001-7294-4148</orcidid><orcidid>https://orcid.org/0000-0001-5024-516X</orcidid><orcidid>https://orcid.org/0000-0001-7801-7134</orcidid><orcidid>https://orcid.org/0000-0001-8841-7705</orcidid><orcidid>https://orcid.org/0000-0002-0724-3895</orcidid><orcidid>https://orcid.org/0000-0001-6231-6957</orcidid><orcidid>https://orcid.org/0000-0003-1659-8206</orcidid><orcidid>https://orcid.org/0000-0002-5844-4371</orcidid><orcidid>https://orcid.org/0000-0001-5031-3468</orcidid><orcidid>https://orcid.org/0000-0002-1886-7708</orcidid><orcidid>https://orcid.org/0000000172944148</orcidid><orcidid>https://orcid.org/0000000316598206</orcidid><orcidid>https://orcid.org/0000000155331163</orcidid><orcidid>https://orcid.org/0000000227203364</orcidid><orcidid>https://orcid.org/0000000277736863</orcidid><orcidid>https://orcid.org/0000000181473464</orcidid><orcidid>https://orcid.org/0000000188417705</orcidid><orcidid>https://orcid.org/0000000326216339</orcidid><orcidid>https://orcid.org/0000000207243895</orcidid><orcidid>https://orcid.org/0000000150313468</orcidid><orcidid>https://orcid.org/0000000194333313</orcidid><orcidid>https://orcid.org/0000000343439542</orcidid><orcidid>https://orcid.org/0000000152485212</orcidid><orcidid>https://orcid.org/000000015024516X</orcidid><orcidid>https://orcid.org/0000000177710949</orcidid><orcidid>https://orcid.org/0000000178017134</orcidid><orcidid>https://orcid.org/0000000160123027</orcidid><orcidid>https://orcid.org/0000000252199328</orcidid><orcidid>https://orcid.org/0000000348491323</orcidid><orcidid>https://orcid.org/000000023633493X</orcidid><orcidid>https://orcid.org/0000000247377978</orcidid><orcidid>https://orcid.org/0000000162316957</orcidid><orcidid>https://orcid.org/0000000218867708</orcidid><orcidid>https://orcid.org/0000000228848260</orcidid><orcidid>https://orcid.org/0000000304631726</orcidid><orcidid>https://orcid.org/0000000258444371</orcidid><orcidid>https://orcid.org/0000000201240933</orcidid><orcidid>https://orcid.org/000000018234260X</orcidid><orcidid>https://orcid.org/0000000346910547</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2020-04, Vol.152 (16), p.164303-164303 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0004465 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Anharmonicity Aromatic compounds Chemical Physics Deuteration Docking Electronic structure Furans Infrared spectra Low temperature Methanol Microwave spectra Physics Quantum chemistry Spectrum analysis Zero point energy |
title | The first microsolvation step for furans: New experiments and benchmarking strategies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T08%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20first%20microsolvation%20step%20for%20furans:%20New%20experiments%20and%20benchmarking%20strategies&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Gottschalk,%20Hannes%20C.&rft.date=2020-04-30&rft.volume=152&rft.issue=16&rft.spage=164303&rft.epage=164303&rft.pages=164303-164303&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0004465&rft_dat=%3Cproquest_scita%3E2397662720%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2396433152&rft_id=info:pmid/32357787&rfr_iscdi=true |