Funnel hopping Monte Carlo: An efficient method to overcome broken ergodicity
Monte Carlo simulations are a powerful tool to investigate the thermodynamic properties of atomic systems. In practice, however, sampling of the complete configuration space is often hindered by high energy barriers between different regions of configuration space, which can make ergodic sampling co...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2020-04, Vol.152 (16), p.164106-164106 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 164106 |
---|---|
container_issue | 16 |
container_start_page | 164106 |
container_title | The Journal of chemical physics |
container_volume | 152 |
creator | Finkler, Jonas A. Goedecker, Stefan |
description | Monte Carlo simulations are a powerful tool to investigate the thermodynamic properties of atomic systems. In practice, however, sampling of the complete configuration space is often hindered by high energy barriers between different regions of configuration space, which can make ergodic sampling completely infeasible within accessible simulation times. Although several extensions to the conventional Monte Carlo scheme have been developed, which enable the treatment of such systems, these extensions often entail substantial computational cost or rely on the harmonic approximation. In this work, we propose an exact method called Funnel Hopping Monte Carlo (FHMC) that is inspired by the ideas of smart darting but is more efficient. Gaussian mixtures are used to approximate the Boltzmann distribution around local energy minima, which are then used to propose high quality Monte Carlo moves that enable the Monte Carlo simulation to directly jump between different funnels. We demonstrate the method’s performance on the example of the 38 as well as the 75 atom Lennard-Jones clusters, which are well known for their double funnel energy landscapes that prevent ergodic sampling with conventional Monte Carlo simulations. By integrating FHMC into the parallel tempering scheme, we were able to reduce the number of steps required significantly until convergence of the simulation. |
doi_str_mv | 10.1063/5.0004106 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0004106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2393804760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-4b4b5162b80bd00163ec045ffed99c963b993389f686b5462a9db46a232470073</originalsourceid><addsrcrecordid>eNp90EFLwzAUB_AgipvTg19AAl5U6HxN0rTxNoZTYcOLnkvTptrZJjVpB_v2ZmxOUPD03uHH_z3-CJ2HMA6B09toDADMrwdoGEIigpgLOERDABIGggMfoBPnlh6FMWHHaEAJjeJY0CFazHqtVY3fTdtW-g0vjO4Unma2Nnd4orEqyyqvlO5wo7p3U-DOYLNSNjeNwtKaD-WNfTOFV936FB2VWe3U2W6O0Ovs_mX6GMyfH56mk3mQ05B2AZNMRiEnMgFZ-Kc4VTmwqCxVIUQuOJVCUJqIkidcRoyTTBSS8YxQwmKAmI7Q1Ta3teazV65Lm8rlqq4zrUzvUkJFzDmPog29_EWXprfaf7dRNAEWc_Dqeqtya5yzqkxbWzWZXachpJuO0yjddeztxS6xl40q9vK7VA9utsD5TrKuMnpvVsb-JKVtUf6H_57-Av47j78</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393804760</pqid></control><display><type>article</type><title>Funnel hopping Monte Carlo: An efficient method to overcome broken ergodicity</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Finkler, Jonas A. ; Goedecker, Stefan</creator><creatorcontrib>Finkler, Jonas A. ; Goedecker, Stefan</creatorcontrib><description>Monte Carlo simulations are a powerful tool to investigate the thermodynamic properties of atomic systems. In practice, however, sampling of the complete configuration space is often hindered by high energy barriers between different regions of configuration space, which can make ergodic sampling completely infeasible within accessible simulation times. Although several extensions to the conventional Monte Carlo scheme have been developed, which enable the treatment of such systems, these extensions often entail substantial computational cost or rely on the harmonic approximation. In this work, we propose an exact method called Funnel Hopping Monte Carlo (FHMC) that is inspired by the ideas of smart darting but is more efficient. Gaussian mixtures are used to approximate the Boltzmann distribution around local energy minima, which are then used to propose high quality Monte Carlo moves that enable the Monte Carlo simulation to directly jump between different funnels. We demonstrate the method’s performance on the example of the 38 as well as the 75 atom Lennard-Jones clusters, which are well known for their double funnel energy landscapes that prevent ergodic sampling with conventional Monte Carlo simulations. By integrating FHMC into the parallel tempering scheme, we were able to reduce the number of steps required significantly until convergence of the simulation.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0004106</identifier><identifier>PMID: 32357793</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Boltzmann distribution ; Computer simulation ; Configurations ; Energy distribution ; Ergodic processes ; Funnels ; Monte Carlo simulation ; Sampling ; Thermodynamic properties</subject><ispartof>The Journal of chemical physics, 2020-04, Vol.152 (16), p.164106-164106</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-4b4b5162b80bd00163ec045ffed99c963b993389f686b5462a9db46a232470073</citedby><cites>FETCH-LOGICAL-c313t-4b4b5162b80bd00163ec045ffed99c963b993389f686b5462a9db46a232470073</cites><orcidid>0000-0002-3580-4186 ; 0000-0003-4970-575X ; 000000034970575X ; 0000000235804186</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0004106$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32357793$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Finkler, Jonas A.</creatorcontrib><creatorcontrib>Goedecker, Stefan</creatorcontrib><title>Funnel hopping Monte Carlo: An efficient method to overcome broken ergodicity</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Monte Carlo simulations are a powerful tool to investigate the thermodynamic properties of atomic systems. In practice, however, sampling of the complete configuration space is often hindered by high energy barriers between different regions of configuration space, which can make ergodic sampling completely infeasible within accessible simulation times. Although several extensions to the conventional Monte Carlo scheme have been developed, which enable the treatment of such systems, these extensions often entail substantial computational cost or rely on the harmonic approximation. In this work, we propose an exact method called Funnel Hopping Monte Carlo (FHMC) that is inspired by the ideas of smart darting but is more efficient. Gaussian mixtures are used to approximate the Boltzmann distribution around local energy minima, which are then used to propose high quality Monte Carlo moves that enable the Monte Carlo simulation to directly jump between different funnels. We demonstrate the method’s performance on the example of the 38 as well as the 75 atom Lennard-Jones clusters, which are well known for their double funnel energy landscapes that prevent ergodic sampling with conventional Monte Carlo simulations. By integrating FHMC into the parallel tempering scheme, we were able to reduce the number of steps required significantly until convergence of the simulation.</description><subject>Boltzmann distribution</subject><subject>Computer simulation</subject><subject>Configurations</subject><subject>Energy distribution</subject><subject>Ergodic processes</subject><subject>Funnels</subject><subject>Monte Carlo simulation</subject><subject>Sampling</subject><subject>Thermodynamic properties</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90EFLwzAUB_AgipvTg19AAl5U6HxN0rTxNoZTYcOLnkvTptrZJjVpB_v2ZmxOUPD03uHH_z3-CJ2HMA6B09toDADMrwdoGEIigpgLOERDABIGggMfoBPnlh6FMWHHaEAJjeJY0CFazHqtVY3fTdtW-g0vjO4Unma2Nnd4orEqyyqvlO5wo7p3U-DOYLNSNjeNwtKaD-WNfTOFV936FB2VWe3U2W6O0Ovs_mX6GMyfH56mk3mQ05B2AZNMRiEnMgFZ-Kc4VTmwqCxVIUQuOJVCUJqIkidcRoyTTBSS8YxQwmKAmI7Q1Ta3teazV65Lm8rlqq4zrUzvUkJFzDmPog29_EWXprfaf7dRNAEWc_Dqeqtya5yzqkxbWzWZXachpJuO0yjddeztxS6xl40q9vK7VA9utsD5TrKuMnpvVsb-JKVtUf6H_57-Av47j78</recordid><startdate>20200430</startdate><enddate>20200430</enddate><creator>Finkler, Jonas A.</creator><creator>Goedecker, Stefan</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3580-4186</orcidid><orcidid>https://orcid.org/0000-0003-4970-575X</orcidid><orcidid>https://orcid.org/000000034970575X</orcidid><orcidid>https://orcid.org/0000000235804186</orcidid></search><sort><creationdate>20200430</creationdate><title>Funnel hopping Monte Carlo: An efficient method to overcome broken ergodicity</title><author>Finkler, Jonas A. ; Goedecker, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-4b4b5162b80bd00163ec045ffed99c963b993389f686b5462a9db46a232470073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boltzmann distribution</topic><topic>Computer simulation</topic><topic>Configurations</topic><topic>Energy distribution</topic><topic>Ergodic processes</topic><topic>Funnels</topic><topic>Monte Carlo simulation</topic><topic>Sampling</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Finkler, Jonas A.</creatorcontrib><creatorcontrib>Goedecker, Stefan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Finkler, Jonas A.</au><au>Goedecker, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Funnel hopping Monte Carlo: An efficient method to overcome broken ergodicity</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2020-04-30</date><risdate>2020</risdate><volume>152</volume><issue>16</issue><spage>164106</spage><epage>164106</epage><pages>164106-164106</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Monte Carlo simulations are a powerful tool to investigate the thermodynamic properties of atomic systems. In practice, however, sampling of the complete configuration space is often hindered by high energy barriers between different regions of configuration space, which can make ergodic sampling completely infeasible within accessible simulation times. Although several extensions to the conventional Monte Carlo scheme have been developed, which enable the treatment of such systems, these extensions often entail substantial computational cost or rely on the harmonic approximation. In this work, we propose an exact method called Funnel Hopping Monte Carlo (FHMC) that is inspired by the ideas of smart darting but is more efficient. Gaussian mixtures are used to approximate the Boltzmann distribution around local energy minima, which are then used to propose high quality Monte Carlo moves that enable the Monte Carlo simulation to directly jump between different funnels. We demonstrate the method’s performance on the example of the 38 as well as the 75 atom Lennard-Jones clusters, which are well known for their double funnel energy landscapes that prevent ergodic sampling with conventional Monte Carlo simulations. By integrating FHMC into the parallel tempering scheme, we were able to reduce the number of steps required significantly until convergence of the simulation.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>32357793</pmid><doi>10.1063/5.0004106</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3580-4186</orcidid><orcidid>https://orcid.org/0000-0003-4970-575X</orcidid><orcidid>https://orcid.org/000000034970575X</orcidid><orcidid>https://orcid.org/0000000235804186</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2020-04, Vol.152 (16), p.164106-164106 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0004106 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Boltzmann distribution Computer simulation Configurations Energy distribution Ergodic processes Funnels Monte Carlo simulation Sampling Thermodynamic properties |
title | Funnel hopping Monte Carlo: An efficient method to overcome broken ergodicity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A45%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Funnel%20hopping%20Monte%20Carlo:%20An%20efficient%20method%20to%20overcome%20broken%20ergodicity&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Finkler,%20Jonas%20A.&rft.date=2020-04-30&rft.volume=152&rft.issue=16&rft.spage=164106&rft.epage=164106&rft.pages=164106-164106&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0004106&rft_dat=%3Cproquest_scita%3E2393804760%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2393804760&rft_id=info:pmid/32357793&rfr_iscdi=true |