Funnel hopping Monte Carlo: An efficient method to overcome broken ergodicity

Monte Carlo simulations are a powerful tool to investigate the thermodynamic properties of atomic systems. In practice, however, sampling of the complete configuration space is often hindered by high energy barriers between different regions of configuration space, which can make ergodic sampling co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2020-04, Vol.152 (16), p.164106-164106
Hauptverfasser: Finkler, Jonas A., Goedecker, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 164106
container_issue 16
container_start_page 164106
container_title The Journal of chemical physics
container_volume 152
creator Finkler, Jonas A.
Goedecker, Stefan
description Monte Carlo simulations are a powerful tool to investigate the thermodynamic properties of atomic systems. In practice, however, sampling of the complete configuration space is often hindered by high energy barriers between different regions of configuration space, which can make ergodic sampling completely infeasible within accessible simulation times. Although several extensions to the conventional Monte Carlo scheme have been developed, which enable the treatment of such systems, these extensions often entail substantial computational cost or rely on the harmonic approximation. In this work, we propose an exact method called Funnel Hopping Monte Carlo (FHMC) that is inspired by the ideas of smart darting but is more efficient. Gaussian mixtures are used to approximate the Boltzmann distribution around local energy minima, which are then used to propose high quality Monte Carlo moves that enable the Monte Carlo simulation to directly jump between different funnels. We demonstrate the method’s performance on the example of the 38 as well as the 75 atom Lennard-Jones clusters, which are well known for their double funnel energy landscapes that prevent ergodic sampling with conventional Monte Carlo simulations. By integrating FHMC into the parallel tempering scheme, we were able to reduce the number of steps required significantly until convergence of the simulation.
doi_str_mv 10.1063/5.0004106
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0004106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2393804760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-4b4b5162b80bd00163ec045ffed99c963b993389f686b5462a9db46a232470073</originalsourceid><addsrcrecordid>eNp90EFLwzAUB_AgipvTg19AAl5U6HxN0rTxNoZTYcOLnkvTptrZJjVpB_v2ZmxOUPD03uHH_z3-CJ2HMA6B09toDADMrwdoGEIigpgLOERDABIGggMfoBPnlh6FMWHHaEAJjeJY0CFazHqtVY3fTdtW-g0vjO4Unma2Nnd4orEqyyqvlO5wo7p3U-DOYLNSNjeNwtKaD-WNfTOFV936FB2VWe3U2W6O0Ovs_mX6GMyfH56mk3mQ05B2AZNMRiEnMgFZ-Kc4VTmwqCxVIUQuOJVCUJqIkidcRoyTTBSS8YxQwmKAmI7Q1Ta3teazV65Lm8rlqq4zrUzvUkJFzDmPog29_EWXprfaf7dRNAEWc_Dqeqtya5yzqkxbWzWZXachpJuO0yjddeztxS6xl40q9vK7VA9utsD5TrKuMnpvVsb-JKVtUf6H_57-Av47j78</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393804760</pqid></control><display><type>article</type><title>Funnel hopping Monte Carlo: An efficient method to overcome broken ergodicity</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Finkler, Jonas A. ; Goedecker, Stefan</creator><creatorcontrib>Finkler, Jonas A. ; Goedecker, Stefan</creatorcontrib><description>Monte Carlo simulations are a powerful tool to investigate the thermodynamic properties of atomic systems. In practice, however, sampling of the complete configuration space is often hindered by high energy barriers between different regions of configuration space, which can make ergodic sampling completely infeasible within accessible simulation times. Although several extensions to the conventional Monte Carlo scheme have been developed, which enable the treatment of such systems, these extensions often entail substantial computational cost or rely on the harmonic approximation. In this work, we propose an exact method called Funnel Hopping Monte Carlo (FHMC) that is inspired by the ideas of smart darting but is more efficient. Gaussian mixtures are used to approximate the Boltzmann distribution around local energy minima, which are then used to propose high quality Monte Carlo moves that enable the Monte Carlo simulation to directly jump between different funnels. We demonstrate the method’s performance on the example of the 38 as well as the 75 atom Lennard-Jones clusters, which are well known for their double funnel energy landscapes that prevent ergodic sampling with conventional Monte Carlo simulations. By integrating FHMC into the parallel tempering scheme, we were able to reduce the number of steps required significantly until convergence of the simulation.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0004106</identifier><identifier>PMID: 32357793</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Boltzmann distribution ; Computer simulation ; Configurations ; Energy distribution ; Ergodic processes ; Funnels ; Monte Carlo simulation ; Sampling ; Thermodynamic properties</subject><ispartof>The Journal of chemical physics, 2020-04, Vol.152 (16), p.164106-164106</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-4b4b5162b80bd00163ec045ffed99c963b993389f686b5462a9db46a232470073</citedby><cites>FETCH-LOGICAL-c313t-4b4b5162b80bd00163ec045ffed99c963b993389f686b5462a9db46a232470073</cites><orcidid>0000-0002-3580-4186 ; 0000-0003-4970-575X ; 000000034970575X ; 0000000235804186</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0004106$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32357793$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Finkler, Jonas A.</creatorcontrib><creatorcontrib>Goedecker, Stefan</creatorcontrib><title>Funnel hopping Monte Carlo: An efficient method to overcome broken ergodicity</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Monte Carlo simulations are a powerful tool to investigate the thermodynamic properties of atomic systems. In practice, however, sampling of the complete configuration space is often hindered by high energy barriers between different regions of configuration space, which can make ergodic sampling completely infeasible within accessible simulation times. Although several extensions to the conventional Monte Carlo scheme have been developed, which enable the treatment of such systems, these extensions often entail substantial computational cost or rely on the harmonic approximation. In this work, we propose an exact method called Funnel Hopping Monte Carlo (FHMC) that is inspired by the ideas of smart darting but is more efficient. Gaussian mixtures are used to approximate the Boltzmann distribution around local energy minima, which are then used to propose high quality Monte Carlo moves that enable the Monte Carlo simulation to directly jump between different funnels. We demonstrate the method’s performance on the example of the 38 as well as the 75 atom Lennard-Jones clusters, which are well known for their double funnel energy landscapes that prevent ergodic sampling with conventional Monte Carlo simulations. By integrating FHMC into the parallel tempering scheme, we were able to reduce the number of steps required significantly until convergence of the simulation.</description><subject>Boltzmann distribution</subject><subject>Computer simulation</subject><subject>Configurations</subject><subject>Energy distribution</subject><subject>Ergodic processes</subject><subject>Funnels</subject><subject>Monte Carlo simulation</subject><subject>Sampling</subject><subject>Thermodynamic properties</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90EFLwzAUB_AgipvTg19AAl5U6HxN0rTxNoZTYcOLnkvTptrZJjVpB_v2ZmxOUPD03uHH_z3-CJ2HMA6B09toDADMrwdoGEIigpgLOERDABIGggMfoBPnlh6FMWHHaEAJjeJY0CFazHqtVY3fTdtW-g0vjO4Unma2Nnd4orEqyyqvlO5wo7p3U-DOYLNSNjeNwtKaD-WNfTOFV936FB2VWe3U2W6O0Ovs_mX6GMyfH56mk3mQ05B2AZNMRiEnMgFZ-Kc4VTmwqCxVIUQuOJVCUJqIkidcRoyTTBSS8YxQwmKAmI7Q1Ta3teazV65Lm8rlqq4zrUzvUkJFzDmPog29_EWXprfaf7dRNAEWc_Dqeqtya5yzqkxbWzWZXachpJuO0yjddeztxS6xl40q9vK7VA9utsD5TrKuMnpvVsb-JKVtUf6H_57-Av47j78</recordid><startdate>20200430</startdate><enddate>20200430</enddate><creator>Finkler, Jonas A.</creator><creator>Goedecker, Stefan</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3580-4186</orcidid><orcidid>https://orcid.org/0000-0003-4970-575X</orcidid><orcidid>https://orcid.org/000000034970575X</orcidid><orcidid>https://orcid.org/0000000235804186</orcidid></search><sort><creationdate>20200430</creationdate><title>Funnel hopping Monte Carlo: An efficient method to overcome broken ergodicity</title><author>Finkler, Jonas A. ; Goedecker, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-4b4b5162b80bd00163ec045ffed99c963b993389f686b5462a9db46a232470073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boltzmann distribution</topic><topic>Computer simulation</topic><topic>Configurations</topic><topic>Energy distribution</topic><topic>Ergodic processes</topic><topic>Funnels</topic><topic>Monte Carlo simulation</topic><topic>Sampling</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Finkler, Jonas A.</creatorcontrib><creatorcontrib>Goedecker, Stefan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Finkler, Jonas A.</au><au>Goedecker, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Funnel hopping Monte Carlo: An efficient method to overcome broken ergodicity</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2020-04-30</date><risdate>2020</risdate><volume>152</volume><issue>16</issue><spage>164106</spage><epage>164106</epage><pages>164106-164106</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Monte Carlo simulations are a powerful tool to investigate the thermodynamic properties of atomic systems. In practice, however, sampling of the complete configuration space is often hindered by high energy barriers between different regions of configuration space, which can make ergodic sampling completely infeasible within accessible simulation times. Although several extensions to the conventional Monte Carlo scheme have been developed, which enable the treatment of such systems, these extensions often entail substantial computational cost or rely on the harmonic approximation. In this work, we propose an exact method called Funnel Hopping Monte Carlo (FHMC) that is inspired by the ideas of smart darting but is more efficient. Gaussian mixtures are used to approximate the Boltzmann distribution around local energy minima, which are then used to propose high quality Monte Carlo moves that enable the Monte Carlo simulation to directly jump between different funnels. We demonstrate the method’s performance on the example of the 38 as well as the 75 atom Lennard-Jones clusters, which are well known for their double funnel energy landscapes that prevent ergodic sampling with conventional Monte Carlo simulations. By integrating FHMC into the parallel tempering scheme, we were able to reduce the number of steps required significantly until convergence of the simulation.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>32357793</pmid><doi>10.1063/5.0004106</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3580-4186</orcidid><orcidid>https://orcid.org/0000-0003-4970-575X</orcidid><orcidid>https://orcid.org/000000034970575X</orcidid><orcidid>https://orcid.org/0000000235804186</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2020-04, Vol.152 (16), p.164106-164106
issn 0021-9606
1089-7690
language eng
recordid cdi_scitation_primary_10_1063_5_0004106
source AIP Journals Complete; Alma/SFX Local Collection
subjects Boltzmann distribution
Computer simulation
Configurations
Energy distribution
Ergodic processes
Funnels
Monte Carlo simulation
Sampling
Thermodynamic properties
title Funnel hopping Monte Carlo: An efficient method to overcome broken ergodicity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A45%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Funnel%20hopping%20Monte%20Carlo:%20An%20efficient%20method%20to%20overcome%20broken%20ergodicity&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Finkler,%20Jonas%20A.&rft.date=2020-04-30&rft.volume=152&rft.issue=16&rft.spage=164106&rft.epage=164106&rft.pages=164106-164106&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0004106&rft_dat=%3Cproquest_scita%3E2393804760%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2393804760&rft_id=info:pmid/32357793&rfr_iscdi=true