Design and implementation of closed-loop controls for smart charging lithium ion battery UNS using switching technique boost converter
Electrical energy produced by photovoltaic technology varies depending on the intensity of sunlight, so we need a treatment to regulate it. There are 2 methods used to operate solar panels at their maximum power point, namely the dynamic method and the static method. One static method is the MPPT me...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2217 |
creator | Apribowo, Chico Hermanu Brillianto Akmal, Muhammad Anwar, Miftahul |
description | Electrical energy produced by photovoltaic technology varies depending on the intensity of sunlight, so we need a treatment to regulate it. There are 2 methods used to operate solar panels at their maximum power point, namely the dynamic method and the static method. One static method is the MPPT method with constant voltage. Boost converter and microcontroller are used to set the algorithm. The use of a boost converter to increase the working voltage of the PV to suit the needs of the load is used. Lead-acid batteries have a certain temperature sensitivity. Voltage output settings are set using the duty cycle, to obtain a stable charging voltage. By testing of charging a 24V 36 Ah battery for 12 hours. With an average charging current of 0.3 A, it is able to charge from 22.16 V to 23.23 V or increases of 1.07 V using open controls. In closed temperature control over voltage, the charging current averages 0.3 A, the battery SoC increases from 22.23 V to 23.27 V or increase of 1.05 Volts. In each test, the battery SoC increases by 1 V or 4% of the battery capacity. The effect of battery charging temperature on this study was small, both in closed control and open control. The increase in temperature between open control and closed control is about 1-2,5 °C and the increase does not touch the maximum limit value of 35 °C |
doi_str_mv | 10.1063/5.0000830 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0000830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389371399</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-59e83ddb3e2146d6a9bd5ef9e1790d011ce75ecbc6510c0ec39428d1acfd9d533</originalsourceid><addsrcrecordid>eNp9kM9KxDAQxoMouK4efIOAN6Fr0jRtc5T1Lyx60AVvIU3SbZY2qUm6si_gc9uygjfnMgPzm29mPgAuMVpglJMbukBjlAQdgRmmFCdFjvNjMEOIZUmakY9TcBbCFqGUFUU5A993OpiNhcIqaLq-1Z22UUTjLHQ1lK0LWiWtcz2Uzkbv2gBr52HohI9QNsJvjN3A1sTGDB2cxioRo_Z7uH55g0OYuuHLRNlMVdSyseZz0LByLsRJc6f9iJ-Dk1q0QV_85jlYP9y_L5-S1evj8_J2lfQ4L2NCmS6JUhXRKc5ylQtWKaprpnHBkEIYS11QLSuZU4wk0pKwLC0VFrJWTFFC5uDqoNt7N54RIt-6wdtxJU9JyUiBCWMjdX2ggjQHM3jvzfjynmPEJ5855b8-_wfvnP8Dea9q8gOC8oHY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2389371399</pqid></control><display><type>conference_proceeding</type><title>Design and implementation of closed-loop controls for smart charging lithium ion battery UNS using switching technique boost converter</title><source>AIP Journals Complete</source><creator>Apribowo, Chico Hermanu Brillianto ; Akmal, Muhammad ; Anwar, Miftahul</creator><contributor>Sutopo, Wahyudi ; Hisjam, Muhammad ; Apribowo, Chico Hermanu Brilianto ; Maghfiroh, Hari ; Ibrahim, Sutrisno ; Anwar, Miftahul ; Ibrahim, Muhammad Hamka</contributor><creatorcontrib>Apribowo, Chico Hermanu Brillianto ; Akmal, Muhammad ; Anwar, Miftahul ; Sutopo, Wahyudi ; Hisjam, Muhammad ; Apribowo, Chico Hermanu Brilianto ; Maghfiroh, Hari ; Ibrahim, Sutrisno ; Anwar, Miftahul ; Ibrahim, Muhammad Hamka</creatorcontrib><description>Electrical energy produced by photovoltaic technology varies depending on the intensity of sunlight, so we need a treatment to regulate it. There are 2 methods used to operate solar panels at their maximum power point, namely the dynamic method and the static method. One static method is the MPPT method with constant voltage. Boost converter and microcontroller are used to set the algorithm. The use of a boost converter to increase the working voltage of the PV to suit the needs of the load is used. Lead-acid batteries have a certain temperature sensitivity. Voltage output settings are set using the duty cycle, to obtain a stable charging voltage. By testing of charging a 24V 36 Ah battery for 12 hours. With an average charging current of 0.3 A, it is able to charge from 22.16 V to 23.23 V or increases of 1.07 V using open controls. In closed temperature control over voltage, the charging current averages 0.3 A, the battery SoC increases from 22.23 V to 23.27 V or increase of 1.05 Volts. In each test, the battery SoC increases by 1 V or 4% of the battery capacity. The effect of battery charging temperature on this study was small, both in closed control and open control. The increase in temperature between open control and closed control is about 1-2,5 °C and the increase does not touch the maximum limit value of 35 °C</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0000830</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Battery chargers ; Charging ; Converters ; Electric charge ; Electric potential ; Lead acid batteries ; Lithium ; Lithium-ion batteries ; Maximum power ; Microcontrollers ; Photovoltaic cells ; Rechargeable batteries ; Temperature control ; Voltage</subject><ispartof>AIP Conference Proceedings, 2020, Vol.2217 (1)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0000830$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Sutopo, Wahyudi</contributor><contributor>Hisjam, Muhammad</contributor><contributor>Apribowo, Chico Hermanu Brilianto</contributor><contributor>Maghfiroh, Hari</contributor><contributor>Ibrahim, Sutrisno</contributor><contributor>Anwar, Miftahul</contributor><contributor>Ibrahim, Muhammad Hamka</contributor><creatorcontrib>Apribowo, Chico Hermanu Brillianto</creatorcontrib><creatorcontrib>Akmal, Muhammad</creatorcontrib><creatorcontrib>Anwar, Miftahul</creatorcontrib><title>Design and implementation of closed-loop controls for smart charging lithium ion battery UNS using switching technique boost converter</title><title>AIP Conference Proceedings</title><description>Electrical energy produced by photovoltaic technology varies depending on the intensity of sunlight, so we need a treatment to regulate it. There are 2 methods used to operate solar panels at their maximum power point, namely the dynamic method and the static method. One static method is the MPPT method with constant voltage. Boost converter and microcontroller are used to set the algorithm. The use of a boost converter to increase the working voltage of the PV to suit the needs of the load is used. Lead-acid batteries have a certain temperature sensitivity. Voltage output settings are set using the duty cycle, to obtain a stable charging voltage. By testing of charging a 24V 36 Ah battery for 12 hours. With an average charging current of 0.3 A, it is able to charge from 22.16 V to 23.23 V or increases of 1.07 V using open controls. In closed temperature control over voltage, the charging current averages 0.3 A, the battery SoC increases from 22.23 V to 23.27 V or increase of 1.05 Volts. In each test, the battery SoC increases by 1 V or 4% of the battery capacity. The effect of battery charging temperature on this study was small, both in closed control and open control. The increase in temperature between open control and closed control is about 1-2,5 °C and the increase does not touch the maximum limit value of 35 °C</description><subject>Algorithms</subject><subject>Battery chargers</subject><subject>Charging</subject><subject>Converters</subject><subject>Electric charge</subject><subject>Electric potential</subject><subject>Lead acid batteries</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Maximum power</subject><subject>Microcontrollers</subject><subject>Photovoltaic cells</subject><subject>Rechargeable batteries</subject><subject>Temperature control</subject><subject>Voltage</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kM9KxDAQxoMouK4efIOAN6Fr0jRtc5T1Lyx60AVvIU3SbZY2qUm6si_gc9uygjfnMgPzm29mPgAuMVpglJMbukBjlAQdgRmmFCdFjvNjMEOIZUmakY9TcBbCFqGUFUU5A993OpiNhcIqaLq-1Z22UUTjLHQ1lK0LWiWtcz2Uzkbv2gBr52HohI9QNsJvjN3A1sTGDB2cxioRo_Z7uH55g0OYuuHLRNlMVdSyseZz0LByLsRJc6f9iJ-Dk1q0QV_85jlYP9y_L5-S1evj8_J2lfQ4L2NCmS6JUhXRKc5ylQtWKaprpnHBkEIYS11QLSuZU4wk0pKwLC0VFrJWTFFC5uDqoNt7N54RIt-6wdtxJU9JyUiBCWMjdX2ggjQHM3jvzfjynmPEJ5855b8-_wfvnP8Dea9q8gOC8oHY</recordid><startdate>20200413</startdate><enddate>20200413</enddate><creator>Apribowo, Chico Hermanu Brillianto</creator><creator>Akmal, Muhammad</creator><creator>Anwar, Miftahul</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20200413</creationdate><title>Design and implementation of closed-loop controls for smart charging lithium ion battery UNS using switching technique boost converter</title><author>Apribowo, Chico Hermanu Brillianto ; Akmal, Muhammad ; Anwar, Miftahul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-59e83ddb3e2146d6a9bd5ef9e1790d011ce75ecbc6510c0ec39428d1acfd9d533</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Battery chargers</topic><topic>Charging</topic><topic>Converters</topic><topic>Electric charge</topic><topic>Electric potential</topic><topic>Lead acid batteries</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Maximum power</topic><topic>Microcontrollers</topic><topic>Photovoltaic cells</topic><topic>Rechargeable batteries</topic><topic>Temperature control</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Apribowo, Chico Hermanu Brillianto</creatorcontrib><creatorcontrib>Akmal, Muhammad</creatorcontrib><creatorcontrib>Anwar, Miftahul</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Apribowo, Chico Hermanu Brillianto</au><au>Akmal, Muhammad</au><au>Anwar, Miftahul</au><au>Sutopo, Wahyudi</au><au>Hisjam, Muhammad</au><au>Apribowo, Chico Hermanu Brilianto</au><au>Maghfiroh, Hari</au><au>Ibrahim, Sutrisno</au><au>Anwar, Miftahul</au><au>Ibrahim, Muhammad Hamka</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Design and implementation of closed-loop controls for smart charging lithium ion battery UNS using switching technique boost converter</atitle><btitle>AIP Conference Proceedings</btitle><date>2020-04-13</date><risdate>2020</risdate><volume>2217</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Electrical energy produced by photovoltaic technology varies depending on the intensity of sunlight, so we need a treatment to regulate it. There are 2 methods used to operate solar panels at their maximum power point, namely the dynamic method and the static method. One static method is the MPPT method with constant voltage. Boost converter and microcontroller are used to set the algorithm. The use of a boost converter to increase the working voltage of the PV to suit the needs of the load is used. Lead-acid batteries have a certain temperature sensitivity. Voltage output settings are set using the duty cycle, to obtain a stable charging voltage. By testing of charging a 24V 36 Ah battery for 12 hours. With an average charging current of 0.3 A, it is able to charge from 22.16 V to 23.23 V or increases of 1.07 V using open controls. In closed temperature control over voltage, the charging current averages 0.3 A, the battery SoC increases from 22.23 V to 23.27 V or increase of 1.05 Volts. In each test, the battery SoC increases by 1 V or 4% of the battery capacity. The effect of battery charging temperature on this study was small, both in closed control and open control. The increase in temperature between open control and closed control is about 1-2,5 °C and the increase does not touch the maximum limit value of 35 °C</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0000830</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2020, Vol.2217 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0000830 |
source | AIP Journals Complete |
subjects | Algorithms Battery chargers Charging Converters Electric charge Electric potential Lead acid batteries Lithium Lithium-ion batteries Maximum power Microcontrollers Photovoltaic cells Rechargeable batteries Temperature control Voltage |
title | Design and implementation of closed-loop controls for smart charging lithium ion battery UNS using switching technique boost converter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A14%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Design%20and%20implementation%20of%20closed-loop%20controls%20for%20smart%20charging%20lithium%20ion%20battery%20UNS%20using%20switching%20technique%20boost%20converter&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Apribowo,%20Chico%20Hermanu%20Brillianto&rft.date=2020-04-13&rft.volume=2217&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0000830&rft_dat=%3Cproquest_scita%3E2389371399%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389371399&rft_id=info:pmid/&rfr_iscdi=true |