Simulation of instability growth rates on the front and back of laser accelerated planar targets

The ability of an inertial confinement fusion target to achieve ignition and burn depends critically upon controlling the growth of hydrodynamic perturbations originating on the outer ablator surface and the inner deuterium–tritium (DT) ice. The MIMOZA-ND code [Sofronov et al., Voprosy Atomnoy Nauki...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of Plasmas 1998-08, Vol.5 (8), p.2988-2996
Hauptverfasser: Bel’kov, S. A., Mkhitarian, L. S., Vinokurov, O. A., Kochemasov, G. G., Bondarenko, S. V., Wilson, D. C., Hoffman, N. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2996
container_issue 8
container_start_page 2988
container_title Physics of Plasmas
container_volume 5
creator Bel’kov, S. A.
Mkhitarian, L. S.
Vinokurov, O. A.
Kochemasov, G. G.
Bondarenko, S. V.
Wilson, D. C.
Hoffman, N. M.
description The ability of an inertial confinement fusion target to achieve ignition and burn depends critically upon controlling the growth of hydrodynamic perturbations originating on the outer ablator surface and the inner deuterium–tritium (DT) ice. The MIMOZA-ND code [Sofronov et al., Voprosy Atomnoy Nauki i Tehniki 2, 3 (1990)] was used to model perturbation growth on both sides of carbon foils irradiated by 0.35 μm light at 10 15   W/cm 2 . When an initial perturbation was applied to a laser irradiated surface, the computational instability growth rates agreed well with the existing theoretical estimates. Perturbations applied to the rear side of the target for wavelengths that are large compared to the thickness (d/Λ≪1) behave similarly to the perturbations at the ablation front. For d/Λ⩾1, the shorter the wave length is, the faster the decrease of the growth rate of the amplitudes at the interface (and the mass flows) as compared to the perturbations at the ablation front. This is due to the Richtmyer–Meshkov instability-induced transverse velocity component. The time of Rayleigh–Taylor instability transition to the nonlinear phase depends on the initial amplitude and is well modeled by an infinitely thin shell approximation. The transverse velocity generated by the Richtmyer–Meshkov instability causes the interaction of Λ=10 μ m and Λ=2 μ m wavelength modes to differ qualitatively when the perturbations are applied to the ablation front or to the rear side of target.
doi_str_mv 10.1063/1.873023
format Article
fullrecord <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_873023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pop</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-6ea7d41164b8f5a1db3dcc6a73071be1974e073cd06450e55a1038d6046fbd5f3</originalsourceid><addsrcrecordid>eNqd0M1KAzEQB_AgCtYq-AjxpoetSZNNtkcpfkHBgwre4mw-2uh2syRR6du764oP4GkG5jcD80folJIZJYJd0lklGZmzPTShpFoUUki-P_SSFELwl0N0lNIbIYSLspqg10e__Wgg-9Di4LBvU4baNz7v8DqGr7zBEbJNuB_njcUuhjZjaA2uQb8PGw0kGzFobRs7UIO7BlqIOENc25yO0YGDJtmT3zpFzzfXT8u7YvVwe7-8WhWazWkuhAVpOKWC15UrgZqaGa0F9L9IWlu6kNwSybQhgpfElj0hrDKif8PVpnRsis7GuyFlr5L22eqNDm1rdVaCLUg17835aHQMKUXrVBf9FuJOUaKG9BRVY3o9vRjpcOknnn_ZzxD_nOqMY99J4H4E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simulation of instability growth rates on the front and back of laser accelerated planar targets</title><source>AIP Digital Archive</source><creator>Bel’kov, S. A. ; Mkhitarian, L. S. ; Vinokurov, O. A. ; Kochemasov, G. G. ; Bondarenko, S. V. ; Wilson, D. C. ; Hoffman, N. M.</creator><creatorcontrib>Bel’kov, S. A. ; Mkhitarian, L. S. ; Vinokurov, O. A. ; Kochemasov, G. G. ; Bondarenko, S. V. ; Wilson, D. C. ; Hoffman, N. M.</creatorcontrib><description>The ability of an inertial confinement fusion target to achieve ignition and burn depends critically upon controlling the growth of hydrodynamic perturbations originating on the outer ablator surface and the inner deuterium–tritium (DT) ice. The MIMOZA-ND code [Sofronov et al., Voprosy Atomnoy Nauki i Tehniki 2, 3 (1990)] was used to model perturbation growth on both sides of carbon foils irradiated by 0.35 μm light at 10 15   W/cm 2 . When an initial perturbation was applied to a laser irradiated surface, the computational instability growth rates agreed well with the existing theoretical estimates. Perturbations applied to the rear side of the target for wavelengths that are large compared to the thickness (d/Λ≪1) behave similarly to the perturbations at the ablation front. For d/Λ⩾1, the shorter the wave length is, the faster the decrease of the growth rate of the amplitudes at the interface (and the mass flows) as compared to the perturbations at the ablation front. This is due to the Richtmyer–Meshkov instability-induced transverse velocity component. The time of Rayleigh–Taylor instability transition to the nonlinear phase depends on the initial amplitude and is well modeled by an infinitely thin shell approximation. The transverse velocity generated by the Richtmyer–Meshkov instability causes the interaction of Λ=10 μ m and Λ=2 μ m wavelength modes to differ qualitatively when the perturbations are applied to the ablation front or to the rear side of target.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.873023</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>United States</publisher><subject>70 PLASMA PHYSICS AND FUSION ; COMPUTER CODES ; HYDRODYNAMICS ; INERTIAL CONFINEMENT ; LASER TARGETS ; PLASMA INSTABILITY ; PLASMA SIMULATION ; RAYLEIGH-TAYLOR INSTABILITY</subject><ispartof>Physics of Plasmas, 1998-08, Vol.5 (8), p.2988-2996</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-6ea7d41164b8f5a1db3dcc6a73071be1974e073cd06450e55a1038d6046fbd5f3</citedby><cites>FETCH-LOGICAL-c321t-6ea7d41164b8f5a1db3dcc6a73071be1974e073cd06450e55a1038d6046fbd5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.873023$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,885,1559,27924,27925,76390</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/639082$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bel’kov, S. A.</creatorcontrib><creatorcontrib>Mkhitarian, L. S.</creatorcontrib><creatorcontrib>Vinokurov, O. A.</creatorcontrib><creatorcontrib>Kochemasov, G. G.</creatorcontrib><creatorcontrib>Bondarenko, S. V.</creatorcontrib><creatorcontrib>Wilson, D. C.</creatorcontrib><creatorcontrib>Hoffman, N. M.</creatorcontrib><title>Simulation of instability growth rates on the front and back of laser accelerated planar targets</title><title>Physics of Plasmas</title><description>The ability of an inertial confinement fusion target to achieve ignition and burn depends critically upon controlling the growth of hydrodynamic perturbations originating on the outer ablator surface and the inner deuterium–tritium (DT) ice. The MIMOZA-ND code [Sofronov et al., Voprosy Atomnoy Nauki i Tehniki 2, 3 (1990)] was used to model perturbation growth on both sides of carbon foils irradiated by 0.35 μm light at 10 15   W/cm 2 . When an initial perturbation was applied to a laser irradiated surface, the computational instability growth rates agreed well with the existing theoretical estimates. Perturbations applied to the rear side of the target for wavelengths that are large compared to the thickness (d/Λ≪1) behave similarly to the perturbations at the ablation front. For d/Λ⩾1, the shorter the wave length is, the faster the decrease of the growth rate of the amplitudes at the interface (and the mass flows) as compared to the perturbations at the ablation front. This is due to the Richtmyer–Meshkov instability-induced transverse velocity component. The time of Rayleigh–Taylor instability transition to the nonlinear phase depends on the initial amplitude and is well modeled by an infinitely thin shell approximation. The transverse velocity generated by the Richtmyer–Meshkov instability causes the interaction of Λ=10 μ m and Λ=2 μ m wavelength modes to differ qualitatively when the perturbations are applied to the ablation front or to the rear side of target.</description><subject>70 PLASMA PHYSICS AND FUSION</subject><subject>COMPUTER CODES</subject><subject>HYDRODYNAMICS</subject><subject>INERTIAL CONFINEMENT</subject><subject>LASER TARGETS</subject><subject>PLASMA INSTABILITY</subject><subject>PLASMA SIMULATION</subject><subject>RAYLEIGH-TAYLOR INSTABILITY</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqd0M1KAzEQB_AgCtYq-AjxpoetSZNNtkcpfkHBgwre4mw-2uh2syRR6du764oP4GkG5jcD80folJIZJYJd0lklGZmzPTShpFoUUki-P_SSFELwl0N0lNIbIYSLspqg10e__Wgg-9Di4LBvU4baNz7v8DqGr7zBEbJNuB_njcUuhjZjaA2uQb8PGw0kGzFobRs7UIO7BlqIOENc25yO0YGDJtmT3zpFzzfXT8u7YvVwe7-8WhWazWkuhAVpOKWC15UrgZqaGa0F9L9IWlu6kNwSybQhgpfElj0hrDKif8PVpnRsis7GuyFlr5L22eqNDm1rdVaCLUg17835aHQMKUXrVBf9FuJOUaKG9BRVY3o9vRjpcOknnn_ZzxD_nOqMY99J4H4E</recordid><startdate>19980801</startdate><enddate>19980801</enddate><creator>Bel’kov, S. A.</creator><creator>Mkhitarian, L. S.</creator><creator>Vinokurov, O. A.</creator><creator>Kochemasov, G. G.</creator><creator>Bondarenko, S. V.</creator><creator>Wilson, D. C.</creator><creator>Hoffman, N. M.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19980801</creationdate><title>Simulation of instability growth rates on the front and back of laser accelerated planar targets</title><author>Bel’kov, S. A. ; Mkhitarian, L. S. ; Vinokurov, O. A. ; Kochemasov, G. G. ; Bondarenko, S. V. ; Wilson, D. C. ; Hoffman, N. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-6ea7d41164b8f5a1db3dcc6a73071be1974e073cd06450e55a1038d6046fbd5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>70 PLASMA PHYSICS AND FUSION</topic><topic>COMPUTER CODES</topic><topic>HYDRODYNAMICS</topic><topic>INERTIAL CONFINEMENT</topic><topic>LASER TARGETS</topic><topic>PLASMA INSTABILITY</topic><topic>PLASMA SIMULATION</topic><topic>RAYLEIGH-TAYLOR INSTABILITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bel’kov, S. A.</creatorcontrib><creatorcontrib>Mkhitarian, L. S.</creatorcontrib><creatorcontrib>Vinokurov, O. A.</creatorcontrib><creatorcontrib>Kochemasov, G. G.</creatorcontrib><creatorcontrib>Bondarenko, S. V.</creatorcontrib><creatorcontrib>Wilson, D. C.</creatorcontrib><creatorcontrib>Hoffman, N. M.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physics of Plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bel’kov, S. A.</au><au>Mkhitarian, L. S.</au><au>Vinokurov, O. A.</au><au>Kochemasov, G. G.</au><au>Bondarenko, S. V.</au><au>Wilson, D. C.</au><au>Hoffman, N. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of instability growth rates on the front and back of laser accelerated planar targets</atitle><jtitle>Physics of Plasmas</jtitle><date>1998-08-01</date><risdate>1998</risdate><volume>5</volume><issue>8</issue><spage>2988</spage><epage>2996</epage><pages>2988-2996</pages><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>The ability of an inertial confinement fusion target to achieve ignition and burn depends critically upon controlling the growth of hydrodynamic perturbations originating on the outer ablator surface and the inner deuterium–tritium (DT) ice. The MIMOZA-ND code [Sofronov et al., Voprosy Atomnoy Nauki i Tehniki 2, 3 (1990)] was used to model perturbation growth on both sides of carbon foils irradiated by 0.35 μm light at 10 15   W/cm 2 . When an initial perturbation was applied to a laser irradiated surface, the computational instability growth rates agreed well with the existing theoretical estimates. Perturbations applied to the rear side of the target for wavelengths that are large compared to the thickness (d/Λ≪1) behave similarly to the perturbations at the ablation front. For d/Λ⩾1, the shorter the wave length is, the faster the decrease of the growth rate of the amplitudes at the interface (and the mass flows) as compared to the perturbations at the ablation front. This is due to the Richtmyer–Meshkov instability-induced transverse velocity component. The time of Rayleigh–Taylor instability transition to the nonlinear phase depends on the initial amplitude and is well modeled by an infinitely thin shell approximation. The transverse velocity generated by the Richtmyer–Meshkov instability causes the interaction of Λ=10 μ m and Λ=2 μ m wavelength modes to differ qualitatively when the perturbations are applied to the ablation front or to the rear side of target.</abstract><cop>United States</cop><doi>10.1063/1.873023</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of Plasmas, 1998-08, Vol.5 (8), p.2988-2996
issn 1070-664X
1089-7674
language eng
recordid cdi_scitation_primary_10_1063_1_873023
source AIP Digital Archive
subjects 70 PLASMA PHYSICS AND FUSION
COMPUTER CODES
HYDRODYNAMICS
INERTIAL CONFINEMENT
LASER TARGETS
PLASMA INSTABILITY
PLASMA SIMULATION
RAYLEIGH-TAYLOR INSTABILITY
title Simulation of instability growth rates on the front and back of laser accelerated planar targets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A51%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20instability%20growth%20rates%20on%20the%20front%20and%20back%20of%20laser%20accelerated%20planar%20targets&rft.jtitle=Physics%20of%20Plasmas&rft.au=Bel%E2%80%99kov,%20S.%20A.&rft.date=1998-08-01&rft.volume=5&rft.issue=8&rft.spage=2988&rft.epage=2996&rft.pages=2988-2996&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.873023&rft_dat=%3Cscitation_osti_%3Epop%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true