Self‐consistent cutoff wave number of the ablative Rayleigh–Taylor instability
The cutoff wave number of the ablative Rayleigh–Taylor instability is calculated self‐consistently by including the effects of finite thermal conduction. The derived cutoff wave number is quite different from the one obtained with the incompressible fluid (∇ ⋅ ṽ=0) or sharp boundary models, and it i...
Gespeichert in:
Veröffentlicht in: | Physics of Plasmas 1995-10, Vol.2 (10), p.3844-3851 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3851 |
---|---|
container_issue | 10 |
container_start_page | 3844 |
container_title | Physics of Plasmas |
container_volume | 2 |
creator | Betti, R. Goncharov, V. N. McCrory, R. L. Verdon, C. P. |
description | The cutoff wave number of the ablative Rayleigh–Taylor instability is calculated self‐consistently by including the effects of finite thermal conduction. The derived cutoff wave number is quite different from the one obtained with the incompressible fluid (∇
⋅
ṽ=0) or sharp boundary models, and it is strongly dependent on thermal conductivity (K∼T
ν) and the Froude number (Fr). The derivation is carried out for values of ν≳1, Fr≳1, and it is valid for some regimes of interest to direct and indirect‐drive inertial confinement fusion (ICF). The analytic formula for the cutoff wave number is in excellent agreement with the numerical results of Kull [Phys. Fluids B 1, 170 (1989)]. |
doi_str_mv | 10.1063/1.871083 |
format | Article |
fullrecord | <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_871083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pop</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-b85c07e562e0ca3f1ecc0354ce6a8aa57b4e411d00403402c17fd7ba626849973</originalsourceid><addsrcrecordid>eNqdkM1KAzEUhYMoWKvgI4w7XUy9mWSS6VKKf1AQtIK7kElvbGQ6KZO00l0fQfAN-ySmVHwAV-dw-Tjccwg5pzCgINg1HVSSQsUOSC_JMJdC8sOdl5ALwd-OyUkIHwDARVn1yPMLNna7-TK-DS5EbGNmltFbm33qFWbtcl5jl3mbxRlmum50dOn8rNcNuvfZdvM9SdZ3mWtD1LVrXFyfkiOrm4Bnv9onr3e3k9FDPn66fxzdjHPDAGJeV6UBiaUoEIxmlqIxwEpuUOhK61LWHDml0_QpMA6FodJOZa1FISo-HErWJxf7XB-iU8G4iGaWerRooqIFL0qemMs9YzofQodWLTo3191aUVC7vRRV-70SerVHd0mppm__xa5898epxdSyHyv5ewE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Self‐consistent cutoff wave number of the ablative Rayleigh–Taylor instability</title><source>AIP Digital Archive</source><creator>Betti, R. ; Goncharov, V. N. ; McCrory, R. L. ; Verdon, C. P.</creator><creatorcontrib>Betti, R. ; Goncharov, V. N. ; McCrory, R. L. ; Verdon, C. P. ; University of Rochester</creatorcontrib><description>The cutoff wave number of the ablative Rayleigh–Taylor instability is calculated self‐consistently by including the effects of finite thermal conduction. The derived cutoff wave number is quite different from the one obtained with the incompressible fluid (∇
⋅
ṽ=0) or sharp boundary models, and it is strongly dependent on thermal conductivity (K∼T
ν) and the Froude number (Fr). The derivation is carried out for values of ν≳1, Fr≳1, and it is valid for some regimes of interest to direct and indirect‐drive inertial confinement fusion (ICF). The analytic formula for the cutoff wave number is in excellent agreement with the numerical results of Kull [Phys. Fluids B 1, 170 (1989)].</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.871083</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>United States</publisher><subject>70 PLASMA PHYSICS AND FUSION ; ABLATION ; FROUDE NUMBER ; IMPLOSIONS ; INERTIAL CONFINEMENT ; INSTABILITY GROWTH RATES ; LASER-PRODUCED PLASMA ; RAYLEIGH-TAYLOR INSTABILITY ; THERMAL CONDUCTIVITY</subject><ispartof>Physics of Plasmas, 1995-10, Vol.2 (10), p.3844-3851</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-b85c07e562e0ca3f1ecc0354ce6a8aa57b4e411d00403402c17fd7ba626849973</citedby><cites>FETCH-LOGICAL-c300t-b85c07e562e0ca3f1ecc0354ce6a8aa57b4e411d00403402c17fd7ba626849973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.871083$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,881,1553,27903,27904,76137</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/124254$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Betti, R.</creatorcontrib><creatorcontrib>Goncharov, V. N.</creatorcontrib><creatorcontrib>McCrory, R. L.</creatorcontrib><creatorcontrib>Verdon, C. P.</creatorcontrib><creatorcontrib>University of Rochester</creatorcontrib><title>Self‐consistent cutoff wave number of the ablative Rayleigh–Taylor instability</title><title>Physics of Plasmas</title><description>The cutoff wave number of the ablative Rayleigh–Taylor instability is calculated self‐consistently by including the effects of finite thermal conduction. The derived cutoff wave number is quite different from the one obtained with the incompressible fluid (∇
⋅
ṽ=0) or sharp boundary models, and it is strongly dependent on thermal conductivity (K∼T
ν) and the Froude number (Fr). The derivation is carried out for values of ν≳1, Fr≳1, and it is valid for some regimes of interest to direct and indirect‐drive inertial confinement fusion (ICF). The analytic formula for the cutoff wave number is in excellent agreement with the numerical results of Kull [Phys. Fluids B 1, 170 (1989)].</description><subject>70 PLASMA PHYSICS AND FUSION</subject><subject>ABLATION</subject><subject>FROUDE NUMBER</subject><subject>IMPLOSIONS</subject><subject>INERTIAL CONFINEMENT</subject><subject>INSTABILITY GROWTH RATES</subject><subject>LASER-PRODUCED PLASMA</subject><subject>RAYLEIGH-TAYLOR INSTABILITY</subject><subject>THERMAL CONDUCTIVITY</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqdkM1KAzEUhYMoWKvgI4w7XUy9mWSS6VKKf1AQtIK7kElvbGQ6KZO00l0fQfAN-ySmVHwAV-dw-Tjccwg5pzCgINg1HVSSQsUOSC_JMJdC8sOdl5ALwd-OyUkIHwDARVn1yPMLNna7-TK-DS5EbGNmltFbm33qFWbtcl5jl3mbxRlmum50dOn8rNcNuvfZdvM9SdZ3mWtD1LVrXFyfkiOrm4Bnv9onr3e3k9FDPn66fxzdjHPDAGJeV6UBiaUoEIxmlqIxwEpuUOhK61LWHDml0_QpMA6FodJOZa1FISo-HErWJxf7XB-iU8G4iGaWerRooqIFL0qemMs9YzofQodWLTo3191aUVC7vRRV-70SerVHd0mppm__xa5898epxdSyHyv5ewE</recordid><startdate>199510</startdate><enddate>199510</enddate><creator>Betti, R.</creator><creator>Goncharov, V. N.</creator><creator>McCrory, R. L.</creator><creator>Verdon, C. P.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>199510</creationdate><title>Self‐consistent cutoff wave number of the ablative Rayleigh–Taylor instability</title><author>Betti, R. ; Goncharov, V. N. ; McCrory, R. L. ; Verdon, C. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-b85c07e562e0ca3f1ecc0354ce6a8aa57b4e411d00403402c17fd7ba626849973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>70 PLASMA PHYSICS AND FUSION</topic><topic>ABLATION</topic><topic>FROUDE NUMBER</topic><topic>IMPLOSIONS</topic><topic>INERTIAL CONFINEMENT</topic><topic>INSTABILITY GROWTH RATES</topic><topic>LASER-PRODUCED PLASMA</topic><topic>RAYLEIGH-TAYLOR INSTABILITY</topic><topic>THERMAL CONDUCTIVITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Betti, R.</creatorcontrib><creatorcontrib>Goncharov, V. N.</creatorcontrib><creatorcontrib>McCrory, R. L.</creatorcontrib><creatorcontrib>Verdon, C. P.</creatorcontrib><creatorcontrib>University of Rochester</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physics of Plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Betti, R.</au><au>Goncharov, V. N.</au><au>McCrory, R. L.</au><au>Verdon, C. P.</au><aucorp>University of Rochester</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self‐consistent cutoff wave number of the ablative Rayleigh–Taylor instability</atitle><jtitle>Physics of Plasmas</jtitle><date>1995-10</date><risdate>1995</risdate><volume>2</volume><issue>10</issue><spage>3844</spage><epage>3851</epage><pages>3844-3851</pages><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>The cutoff wave number of the ablative Rayleigh–Taylor instability is calculated self‐consistently by including the effects of finite thermal conduction. The derived cutoff wave number is quite different from the one obtained with the incompressible fluid (∇
⋅
ṽ=0) or sharp boundary models, and it is strongly dependent on thermal conductivity (K∼T
ν) and the Froude number (Fr). The derivation is carried out for values of ν≳1, Fr≳1, and it is valid for some regimes of interest to direct and indirect‐drive inertial confinement fusion (ICF). The analytic formula for the cutoff wave number is in excellent agreement with the numerical results of Kull [Phys. Fluids B 1, 170 (1989)].</abstract><cop>United States</cop><doi>10.1063/1.871083</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of Plasmas, 1995-10, Vol.2 (10), p.3844-3851 |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_871083 |
source | AIP Digital Archive |
subjects | 70 PLASMA PHYSICS AND FUSION ABLATION FROUDE NUMBER IMPLOSIONS INERTIAL CONFINEMENT INSTABILITY GROWTH RATES LASER-PRODUCED PLASMA RAYLEIGH-TAYLOR INSTABILITY THERMAL CONDUCTIVITY |
title | Self‐consistent cutoff wave number of the ablative Rayleigh–Taylor instability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%E2%80%90consistent%20cutoff%20wave%20number%20of%20the%20ablative%20Rayleigh%E2%80%93Taylor%20instability&rft.jtitle=Physics%20of%20Plasmas&rft.au=Betti,%20R.&rft.aucorp=University%20of%20Rochester&rft.date=1995-10&rft.volume=2&rft.issue=10&rft.spage=3844&rft.epage=3851&rft.pages=3844-3851&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.871083&rft_dat=%3Cscitation_osti_%3Epop%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |