Self‐consistent cutoff wave number of the ablative Rayleigh–Taylor instability

The cutoff wave number of the ablative Rayleigh–Taylor instability is calculated self‐consistently by including the effects of finite thermal conduction. The derived cutoff wave number is quite different from the one obtained with the incompressible fluid (∇ ⋅ ṽ=0) or sharp boundary models, and it i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of Plasmas 1995-10, Vol.2 (10), p.3844-3851
Hauptverfasser: Betti, R., Goncharov, V. N., McCrory, R. L., Verdon, C. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3851
container_issue 10
container_start_page 3844
container_title Physics of Plasmas
container_volume 2
creator Betti, R.
Goncharov, V. N.
McCrory, R. L.
Verdon, C. P.
description The cutoff wave number of the ablative Rayleigh–Taylor instability is calculated self‐consistently by including the effects of finite thermal conduction. The derived cutoff wave number is quite different from the one obtained with the incompressible fluid (∇ ⋅ ṽ=0) or sharp boundary models, and it is strongly dependent on thermal conductivity (K∼T ν) and the Froude number (Fr). The derivation is carried out for values of ν≳1, Fr≳1, and it is valid for some regimes of interest to direct and indirect‐drive inertial confinement fusion (ICF). The analytic formula for the cutoff wave number is in excellent agreement with the numerical results of Kull [Phys. Fluids B 1, 170 (1989)].
doi_str_mv 10.1063/1.871083
format Article
fullrecord <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_871083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pop</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-b85c07e562e0ca3f1ecc0354ce6a8aa57b4e411d00403402c17fd7ba626849973</originalsourceid><addsrcrecordid>eNqdkM1KAzEUhYMoWKvgI4w7XUy9mWSS6VKKf1AQtIK7kElvbGQ6KZO00l0fQfAN-ySmVHwAV-dw-Tjccwg5pzCgINg1HVSSQsUOSC_JMJdC8sOdl5ALwd-OyUkIHwDARVn1yPMLNna7-TK-DS5EbGNmltFbm33qFWbtcl5jl3mbxRlmum50dOn8rNcNuvfZdvM9SdZ3mWtD1LVrXFyfkiOrm4Bnv9onr3e3k9FDPn66fxzdjHPDAGJeV6UBiaUoEIxmlqIxwEpuUOhK61LWHDml0_QpMA6FodJOZa1FISo-HErWJxf7XB-iU8G4iGaWerRooqIFL0qemMs9YzofQodWLTo3191aUVC7vRRV-70SerVHd0mppm__xa5898epxdSyHyv5ewE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Self‐consistent cutoff wave number of the ablative Rayleigh–Taylor instability</title><source>AIP Digital Archive</source><creator>Betti, R. ; Goncharov, V. N. ; McCrory, R. L. ; Verdon, C. P.</creator><creatorcontrib>Betti, R. ; Goncharov, V. N. ; McCrory, R. L. ; Verdon, C. P. ; University of Rochester</creatorcontrib><description>The cutoff wave number of the ablative Rayleigh–Taylor instability is calculated self‐consistently by including the effects of finite thermal conduction. The derived cutoff wave number is quite different from the one obtained with the incompressible fluid (∇ ⋅ ṽ=0) or sharp boundary models, and it is strongly dependent on thermal conductivity (K∼T ν) and the Froude number (Fr). The derivation is carried out for values of ν≳1, Fr≳1, and it is valid for some regimes of interest to direct and indirect‐drive inertial confinement fusion (ICF). The analytic formula for the cutoff wave number is in excellent agreement with the numerical results of Kull [Phys. Fluids B 1, 170 (1989)].</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.871083</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>United States</publisher><subject>70 PLASMA PHYSICS AND FUSION ; ABLATION ; FROUDE NUMBER ; IMPLOSIONS ; INERTIAL CONFINEMENT ; INSTABILITY GROWTH RATES ; LASER-PRODUCED PLASMA ; RAYLEIGH-TAYLOR INSTABILITY ; THERMAL CONDUCTIVITY</subject><ispartof>Physics of Plasmas, 1995-10, Vol.2 (10), p.3844-3851</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-b85c07e562e0ca3f1ecc0354ce6a8aa57b4e411d00403402c17fd7ba626849973</citedby><cites>FETCH-LOGICAL-c300t-b85c07e562e0ca3f1ecc0354ce6a8aa57b4e411d00403402c17fd7ba626849973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.871083$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,881,1553,27903,27904,76137</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/124254$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Betti, R.</creatorcontrib><creatorcontrib>Goncharov, V. N.</creatorcontrib><creatorcontrib>McCrory, R. L.</creatorcontrib><creatorcontrib>Verdon, C. P.</creatorcontrib><creatorcontrib>University of Rochester</creatorcontrib><title>Self‐consistent cutoff wave number of the ablative Rayleigh–Taylor instability</title><title>Physics of Plasmas</title><description>The cutoff wave number of the ablative Rayleigh–Taylor instability is calculated self‐consistently by including the effects of finite thermal conduction. The derived cutoff wave number is quite different from the one obtained with the incompressible fluid (∇ ⋅ ṽ=0) or sharp boundary models, and it is strongly dependent on thermal conductivity (K∼T ν) and the Froude number (Fr). The derivation is carried out for values of ν≳1, Fr≳1, and it is valid for some regimes of interest to direct and indirect‐drive inertial confinement fusion (ICF). The analytic formula for the cutoff wave number is in excellent agreement with the numerical results of Kull [Phys. Fluids B 1, 170 (1989)].</description><subject>70 PLASMA PHYSICS AND FUSION</subject><subject>ABLATION</subject><subject>FROUDE NUMBER</subject><subject>IMPLOSIONS</subject><subject>INERTIAL CONFINEMENT</subject><subject>INSTABILITY GROWTH RATES</subject><subject>LASER-PRODUCED PLASMA</subject><subject>RAYLEIGH-TAYLOR INSTABILITY</subject><subject>THERMAL CONDUCTIVITY</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqdkM1KAzEUhYMoWKvgI4w7XUy9mWSS6VKKf1AQtIK7kElvbGQ6KZO00l0fQfAN-ySmVHwAV-dw-Tjccwg5pzCgINg1HVSSQsUOSC_JMJdC8sOdl5ALwd-OyUkIHwDARVn1yPMLNna7-TK-DS5EbGNmltFbm33qFWbtcl5jl3mbxRlmum50dOn8rNcNuvfZdvM9SdZ3mWtD1LVrXFyfkiOrm4Bnv9onr3e3k9FDPn66fxzdjHPDAGJeV6UBiaUoEIxmlqIxwEpuUOhK61LWHDml0_QpMA6FodJOZa1FISo-HErWJxf7XB-iU8G4iGaWerRooqIFL0qemMs9YzofQodWLTo3191aUVC7vRRV-70SerVHd0mppm__xa5898epxdSyHyv5ewE</recordid><startdate>199510</startdate><enddate>199510</enddate><creator>Betti, R.</creator><creator>Goncharov, V. N.</creator><creator>McCrory, R. L.</creator><creator>Verdon, C. P.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>199510</creationdate><title>Self‐consistent cutoff wave number of the ablative Rayleigh–Taylor instability</title><author>Betti, R. ; Goncharov, V. N. ; McCrory, R. L. ; Verdon, C. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-b85c07e562e0ca3f1ecc0354ce6a8aa57b4e411d00403402c17fd7ba626849973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>70 PLASMA PHYSICS AND FUSION</topic><topic>ABLATION</topic><topic>FROUDE NUMBER</topic><topic>IMPLOSIONS</topic><topic>INERTIAL CONFINEMENT</topic><topic>INSTABILITY GROWTH RATES</topic><topic>LASER-PRODUCED PLASMA</topic><topic>RAYLEIGH-TAYLOR INSTABILITY</topic><topic>THERMAL CONDUCTIVITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Betti, R.</creatorcontrib><creatorcontrib>Goncharov, V. N.</creatorcontrib><creatorcontrib>McCrory, R. L.</creatorcontrib><creatorcontrib>Verdon, C. P.</creatorcontrib><creatorcontrib>University of Rochester</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physics of Plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Betti, R.</au><au>Goncharov, V. N.</au><au>McCrory, R. L.</au><au>Verdon, C. P.</au><aucorp>University of Rochester</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self‐consistent cutoff wave number of the ablative Rayleigh–Taylor instability</atitle><jtitle>Physics of Plasmas</jtitle><date>1995-10</date><risdate>1995</risdate><volume>2</volume><issue>10</issue><spage>3844</spage><epage>3851</epage><pages>3844-3851</pages><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>The cutoff wave number of the ablative Rayleigh–Taylor instability is calculated self‐consistently by including the effects of finite thermal conduction. The derived cutoff wave number is quite different from the one obtained with the incompressible fluid (∇ ⋅ ṽ=0) or sharp boundary models, and it is strongly dependent on thermal conductivity (K∼T ν) and the Froude number (Fr). The derivation is carried out for values of ν≳1, Fr≳1, and it is valid for some regimes of interest to direct and indirect‐drive inertial confinement fusion (ICF). The analytic formula for the cutoff wave number is in excellent agreement with the numerical results of Kull [Phys. Fluids B 1, 170 (1989)].</abstract><cop>United States</cop><doi>10.1063/1.871083</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of Plasmas, 1995-10, Vol.2 (10), p.3844-3851
issn 1070-664X
1089-7674
language eng
recordid cdi_scitation_primary_10_1063_1_871083
source AIP Digital Archive
subjects 70 PLASMA PHYSICS AND FUSION
ABLATION
FROUDE NUMBER
IMPLOSIONS
INERTIAL CONFINEMENT
INSTABILITY GROWTH RATES
LASER-PRODUCED PLASMA
RAYLEIGH-TAYLOR INSTABILITY
THERMAL CONDUCTIVITY
title Self‐consistent cutoff wave number of the ablative Rayleigh–Taylor instability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%E2%80%90consistent%20cutoff%20wave%20number%20of%20the%20ablative%20Rayleigh%E2%80%93Taylor%20instability&rft.jtitle=Physics%20of%20Plasmas&rft.au=Betti,%20R.&rft.aucorp=University%20of%20Rochester&rft.date=1995-10&rft.volume=2&rft.issue=10&rft.spage=3844&rft.epage=3851&rft.pages=3844-3851&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.871083&rft_dat=%3Cscitation_osti_%3Epop%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true