Effect of wall slip on the stability of viscoelastic plane shear flow
We show that for shear flow of an upper convected Maxwell fluid with small but nonzero slip velocity, an increasing dependence of the slip velocity on the elastic normal stress in the flow direction leads to short wavelength flow instability at sufficiently high Weissenberg number (≳10). Pressure-de...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 1999-07, Vol.11 (7), p.1749-1756 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1756 |
---|---|
container_issue | 7 |
container_start_page | 1749 |
container_title | Physics of fluids (1994) |
container_volume | 11 |
creator | Black, William B. Graham, Michael D. |
description | We show that for shear flow of an upper convected Maxwell fluid with small but nonzero slip velocity, an increasing dependence of the slip velocity on the elastic normal stress in the flow direction leads to short wavelength flow instability at sufficiently high Weissenberg number (≳10). Pressure-dependent slip can also lead to instability, but only at unrealistically large Weissenberg number. If the slip velocity depends only on shear stress, then the flow is always stable. These analytical results are valid in a specific asymptotic limit, but are independent of the specific form of the model for slip. Numerical results for specific, phenomenological slip models and the Phan-Thien–Tanner bulk constitutive model show that the results are robust in the presence of nonlinear viscoelasticity. The scaling of the critical shear stress for instability with modulus and molecular weight and of the distortion period with polymer relaxation time are qualitatively consistent with experimental observations of the sharkskin instability in linear polyethylenes. The results may also have some relationship to the recent experimental observation of short wavelength instability in plane Couette flow of an entangled solution with wall slip. |
doi_str_mv | 10.1063/1.870040 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_870040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_870040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c208t-5b2260b37f8c895f2fba42c28b3b1dd5dbaf72dd9df10fe24b4de745e1dbc24a3</originalsourceid><addsrcrecordid>eNqdj11LwzAYhYMoOKfgT8ilXnS-Sdq0vZRRpzDwRq9Lvl4WiU1pwsb-vSsTf4BX58B5OPAQcs9gxUCKJ7ZqaoASLsiCQdMWtZTycu41FFIKdk1uUvoCANFyuSBdh-hMphHpQYVAU_AjjQPNO0dTVtoHn4_zuvfJRBdUyt7QMajhtO-cmiiGeLglV6hCcne_uSSfL93H-rXYvm_e1s_bwnBoclFpziVoUWNjmrZCjlqV3PBGC82sraxWWHNrW4sM0PFSl9bVZeWY1YaXSizJw_nXTDGlyWE_Tv5bTceeQT_r96w_65_QxzOajM8q-zj8i93H6Y_rR4viB5u4aSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of wall slip on the stability of viscoelastic plane shear flow</title><source>AIP Journals Complete</source><source>AIP_美国物理联合会期刊回溯(NSTL购买)</source><creator>Black, William B. ; Graham, Michael D.</creator><creatorcontrib>Black, William B. ; Graham, Michael D.</creatorcontrib><description>We show that for shear flow of an upper convected Maxwell fluid with small but nonzero slip velocity, an increasing dependence of the slip velocity on the elastic normal stress in the flow direction leads to short wavelength flow instability at sufficiently high Weissenberg number (≳10). Pressure-dependent slip can also lead to instability, but only at unrealistically large Weissenberg number. If the slip velocity depends only on shear stress, then the flow is always stable. These analytical results are valid in a specific asymptotic limit, but are independent of the specific form of the model for slip. Numerical results for specific, phenomenological slip models and the Phan-Thien–Tanner bulk constitutive model show that the results are robust in the presence of nonlinear viscoelasticity. The scaling of the critical shear stress for instability with modulus and molecular weight and of the distortion period with polymer relaxation time are qualitatively consistent with experimental observations of the sharkskin instability in linear polyethylenes. The results may also have some relationship to the recent experimental observation of short wavelength instability in plane Couette flow of an entangled solution with wall slip.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.870040</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><ispartof>Physics of fluids (1994), 1999-07, Vol.11 (7), p.1749-1756</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c208t-5b2260b37f8c895f2fba42c28b3b1dd5dbaf72dd9df10fe24b4de745e1dbc24a3</citedby><cites>FETCH-LOGICAL-c208t-5b2260b37f8c895f2fba42c28b3b1dd5dbaf72dd9df10fe24b4de745e1dbc24a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,1559,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Black, William B.</creatorcontrib><creatorcontrib>Graham, Michael D.</creatorcontrib><title>Effect of wall slip on the stability of viscoelastic plane shear flow</title><title>Physics of fluids (1994)</title><description>We show that for shear flow of an upper convected Maxwell fluid with small but nonzero slip velocity, an increasing dependence of the slip velocity on the elastic normal stress in the flow direction leads to short wavelength flow instability at sufficiently high Weissenberg number (≳10). Pressure-dependent slip can also lead to instability, but only at unrealistically large Weissenberg number. If the slip velocity depends only on shear stress, then the flow is always stable. These analytical results are valid in a specific asymptotic limit, but are independent of the specific form of the model for slip. Numerical results for specific, phenomenological slip models and the Phan-Thien–Tanner bulk constitutive model show that the results are robust in the presence of nonlinear viscoelasticity. The scaling of the critical shear stress for instability with modulus and molecular weight and of the distortion period with polymer relaxation time are qualitatively consistent with experimental observations of the sharkskin instability in linear polyethylenes. The results may also have some relationship to the recent experimental observation of short wavelength instability in plane Couette flow of an entangled solution with wall slip.</description><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqdj11LwzAYhYMoOKfgT8ilXnS-Sdq0vZRRpzDwRq9Lvl4WiU1pwsb-vSsTf4BX58B5OPAQcs9gxUCKJ7ZqaoASLsiCQdMWtZTycu41FFIKdk1uUvoCANFyuSBdh-hMphHpQYVAU_AjjQPNO0dTVtoHn4_zuvfJRBdUyt7QMajhtO-cmiiGeLglV6hCcne_uSSfL93H-rXYvm_e1s_bwnBoclFpziVoUWNjmrZCjlqV3PBGC82sraxWWHNrW4sM0PFSl9bVZeWY1YaXSizJw_nXTDGlyWE_Tv5bTceeQT_r96w_65_QxzOajM8q-zj8i93H6Y_rR4viB5u4aSQ</recordid><startdate>199907</startdate><enddate>199907</enddate><creator>Black, William B.</creator><creator>Graham, Michael D.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199907</creationdate><title>Effect of wall slip on the stability of viscoelastic plane shear flow</title><author>Black, William B. ; Graham, Michael D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c208t-5b2260b37f8c895f2fba42c28b3b1dd5dbaf72dd9df10fe24b4de745e1dbc24a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Black, William B.</creatorcontrib><creatorcontrib>Graham, Michael D.</creatorcontrib><collection>CrossRef</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Black, William B.</au><au>Graham, Michael D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of wall slip on the stability of viscoelastic plane shear flow</atitle><jtitle>Physics of fluids (1994)</jtitle><date>1999-07</date><risdate>1999</risdate><volume>11</volume><issue>7</issue><spage>1749</spage><epage>1756</epage><pages>1749-1756</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>We show that for shear flow of an upper convected Maxwell fluid with small but nonzero slip velocity, an increasing dependence of the slip velocity on the elastic normal stress in the flow direction leads to short wavelength flow instability at sufficiently high Weissenberg number (≳10). Pressure-dependent slip can also lead to instability, but only at unrealistically large Weissenberg number. If the slip velocity depends only on shear stress, then the flow is always stable. These analytical results are valid in a specific asymptotic limit, but are independent of the specific form of the model for slip. Numerical results for specific, phenomenological slip models and the Phan-Thien–Tanner bulk constitutive model show that the results are robust in the presence of nonlinear viscoelasticity. The scaling of the critical shear stress for instability with modulus and molecular weight and of the distortion period with polymer relaxation time are qualitatively consistent with experimental observations of the sharkskin instability in linear polyethylenes. The results may also have some relationship to the recent experimental observation of short wavelength instability in plane Couette flow of an entangled solution with wall slip.</abstract><doi>10.1063/1.870040</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 1999-07, Vol.11 (7), p.1749-1756 |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_870040 |
source | AIP Journals Complete; AIP_美国物理联合会期刊回溯(NSTL购买) |
title | Effect of wall slip on the stability of viscoelastic plane shear flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A43%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20wall%20slip%20on%20the%20stability%20of%20viscoelastic%20plane%20shear%20flow&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Black,%20William%20B.&rft.date=1999-07&rft.volume=11&rft.issue=7&rft.spage=1749&rft.epage=1756&rft.pages=1749-1756&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.870040&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_870040%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |